若-1<α<β<1,則α-β的范圍為:

[  ]

A.(-2,0)

B.(-2,-1)

C.(-1,0)

D.(0,1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+x2-2x-2正整數(shù)為零點(diǎn)附近的函數(shù)值用二分法計(jì)算,其參考數(shù)據(jù)如下:
f(1)=-2,f(1.5)=0.65,f(1.25)=-0.984,f(1.375)=-0.260,f(1.4375)=0.162.f(1.40625)=-0.054.
則方程x3+x2-2x-2=0的一個(gè)近似值(精確到0.1)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青州市模擬)繼“三鹿奶粉”,“瘦肉精”,“地溝油”等事件的發(fā)生之后,食品安全問題屢屢發(fā)生,引起了國(guó)務(wù)院的高度重視.為了加強(qiáng)食品的安全,某食品安檢部門調(diào)查一個(gè)海水養(yǎng)殖場(chǎng)的養(yǎng)殖魚的有關(guān)情況,安檢人員從這個(gè)海水養(yǎng)殖場(chǎng)中不同位置共捕撈出100條魚,稱得每條魚的重量(單位:kg),并將所得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)得下表.若規(guī)定超過正常生長(zhǎng)的速度為1.0~1.2kg/年的比重超過15%,則認(rèn)為所飼養(yǎng)的魚有問題,否則認(rèn)為所飼養(yǎng)的魚沒有問題.
魚的質(zhì)量 [1.00,1.05) [1.05,1.1) [1.10,1.15) [1.15,1.2) [1.20,1.25) [1.25,1.30)
魚的條數(shù) 3 20 35 31 9 2
(Ⅰ)根據(jù)數(shù)據(jù)統(tǒng)計(jì)表,估計(jì)數(shù)據(jù)落在[1.20,1.30)中的概率約為多少,并判斷此養(yǎng)殖場(chǎng)所飼養(yǎng)的魚是否存在問題?
(Ⅱ)上面捕撈的100條魚中間,從重量在[1.00,1.05)和[[1.25,1.30)的魚中,任取2條魚來檢測(cè),求恰好所取得魚重量[1.00,1.05)和[[1.25,1.30)各有1條的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)數(shù)列{an}的前n項(xiàng)和Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,(n=1,2,…)
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
(2)設(shè)bn=(n+1)•log3an+1,數(shù)列{
1
bn
}前n項(xiàng)和Tn.在(1)的條件下,證明不等式Tn<1;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,在(1)的條件下,令cn=
nan-4
nan
(n=1,2,…),求數(shù)列{cn}的“積異號(hào)數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海二模)若把1+(1+x)+(1+x)2+…+(1+x)n展開成關(guān)于x的多項(xiàng)式,其各項(xiàng)系數(shù)和為an(n∈N*),則an=
2n+1-1
2n+1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l∥平面α,直線l的方向向量為
s
,平面α的法向量為
n
,則下列結(jié)論正確的是( 。
A、
s
=(-1,0,2),
n
=(1,0,-1)
B、
s
=(-1,0,1),
n
=(1,2,-1)
C、
s
=(-1,1,1),
n
=(1,2,-1)
D、
s
=(-1,1,1),
n
=(-2,2,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案