設(shè)函數(shù).
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線與交于,兩點,求證:.
(1)解:f'(x)=lnx+1(x>0),令f'(x)=0,得.
∵當時,f'(x)<0;當時,
f'(x)>0,
∴當時,.----------------- 4分
(2)F(x)=ax2+lnx+1(x>0),.
①當a≥0時,恒有F'(x)>0,F(xiàn)(x)在(0,+∞)上是增函數(shù);
②當a<0時,
令F'(x)>0,得2ax2+1>0,解得;
令F'(x)<0,得2ax2+1<0,解得.
綜上,當a≥0時,F(xiàn)(x)在(0,+∞)上是增函數(shù);
當a<0時,F(xiàn)(x)在上單調(diào)遞增,在上單調(diào)遞減.------------------------------------8分
(3)證:.
要證,即證,等價于證,令,
則只要證,由t>1知lnt>0,
故等價于證lnt<t﹣1<tlnt(t>1)(*).
①設(shè)g(t)=t﹣1﹣lnt(t≥1),則,
故g(t)在[1,+∞)上是增函數(shù),
∴當t>1時,g(t)=t﹣1﹣lnt>g(1)=0,即t﹣1>lnt(t>1).
②設(shè)h(t)=tlnt﹣(t﹣1)(t≥1),則h'(t)=lnt≥0(t≥1),故h(t)在[1,+∞)上是增函數(shù),
∴當t>1時,h(t)=tlnt﹣(t﹣1)>h(1)=0,即t﹣1<tlnt(t>1).
由①②知(*)成立,得證.
科目:高中數(shù)學(xué) 來源: 題型:
為了了解小學(xué)五年級學(xué)生的體能情況,抽取了實驗小學(xué)五年級部分學(xué)生
進行踢毽子測試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖(如圖),已知圖中從左到右的
前三個小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)是5.
(Ⅰ)求第四小組的頻率和參加這次測試的學(xué)生人數(shù);
(Ⅱ)在這次測試中,問學(xué)生踢毽子次數(shù)的中位數(shù)落
在第幾小組內(nèi)?
(Ⅲ)在這次跳繩測試中,規(guī)定跳繩次數(shù)在110以上
的為優(yōu)秀,試估計該校此年級跳繩成績的優(yōu)秀率
是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知向量,
(1)若,求;
(2)設(shè)的三邊滿足,且邊所對應(yīng)的角為,若關(guān)于的方程有且僅有一個實數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:
(1)如果不超過200元,則不給予優(yōu)惠;
(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;
(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.
某人兩次去購物,分別付款168元和423元,假設(shè)他一次性購買上述兩次同樣的商品,則應(yīng)付款是
A .413.7元 B. 513.7元
C. 546.6元 D .548.7元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com