已知函數(shù)數(shù)學(xué)公式
(Ⅰ) 證明f(x)在[1,+∞)上是增函數(shù);
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

(I)證明:在[1,+∞)上任取x1,x2,且x1<x2(2分)
(1分)
=(1分)
∵x1<x2∴x1-x2<0
∵x1∈[1,+∞),x2∈[1,+∞)∴x1x2-1>0
∴f(x1)-f(x2)<0即f(x1)<f(x2
故f(x)在[1,+∞)上是增函數(shù)(2分)
(II)解:由(I)知:
f(x)在[1,4]上是增函數(shù)
∴當(dāng)x=1時(shí),有最小值2;
當(dāng)x=4時(shí),有最大值(2分)
分析:(I)用單調(diào)性定義證明,先任取兩個(gè)變量且界定大小,再作差變形看符號(hào).
(II)由(I)知f(x)在[1,+∞)上是增函數(shù),可知在[1,4]也是增函數(shù),則當(dāng)x=1時(shí),取得最小值,當(dāng)x=4時(shí),取得最大值.
點(diǎn)評(píng):本題主要考查單調(diào)性證明和應(yīng)用單調(diào)性求函數(shù)最值問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tanx 滿足tan(x+
π
4
)=
1+tanx
1-tanx
由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿足f(x+a)=
1+f(x)
1-f(x)
,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類比出函數(shù)f(x)的周期為
4a
4a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(x>0)
,
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=2x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)均在函數(shù)y=f(x)的圖象上.若bn=
1
2
(an+3)
(1)當(dāng)n≥2時(shí),試比較bn+12bn的大。
(2)記cn=
1
bn
(n∈N*),試證c1+c2+…+c400<39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+ln(x+1)
x
(x>0),
(1)函數(shù)f(x) 在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)證明:當(dāng)x>0時(shí),f(x)>
3
x+1
恒成立;
(3)試證:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n-3(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知函數(shù)f(x)=ax3+bx2+c(a,b,c∈R,a≠0)的圖象過點(diǎn)P(-1,2)且在P處的切線與直線x-3y=0垂直.
(Ⅰ)若c=0,試求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>0,b>0且f(x)在區(qū)間(-∞,m)及(n,+∞)上均為增函數(shù),試證:n-m>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案