分析 (1)根據(jù)三角函數(shù)之間的關系,利用sin2α+cos2α=1將式子進行化簡即可得到結(jié)論;
(2)直接利用同角三角函數(shù)的基本關系式化簡求解即可.
解答 解:(1)$\frac{sinα}{1+sinα}$-$\frac{sinα}{1-sinα}$=$\frac{sinα(1-sinα)-sinα(1+sinα)}{(1+sinα)(1-sinα)}$=$\frac{-2si{n}^{2}α}{co{s}^{2}α}=-2ta{n}^{2}α$;
(2)$\frac{\sqrt{1+2sin10°cos10°}}{cos10°+\sqrt{1-co{s}^{2}10°}}$=$\frac{\sqrt{(sin10°+cos10°)^{2}}}{cos10°+\sqrt{si{n}^{2}10°}}$=$\frac{sin10°+cos10°}{cos10°+sin10°}=1$.
點評 本題考查三角函數(shù)的化簡,考查同角三角函數(shù)的基本關系式的應用,考查計算能力,利用sin2α+cos2α=1是解決本題的關鍵,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=sin(2x-$\frac{π}{4}$) | B. | f(x)=sin(2x+$\frac{π}{4}$) | C. | f(x)=sin(4x+$\frac{π}{4}$) | D. | f(x)=sin(4x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3 | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{π}{4}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 右移$\frac{π}{3}$ | B. | 左移$\frac{π}{3}$ | C. | 右移$\frac{π}{6}$ | D. | 左移$\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com