若a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為
 
分析:根據(jù)兩條直線垂直的性質求得b=
1
2
+
1
a2
,再根據(jù)|ab|=|
a
2
+
1
a
|=|
a
2
|+|
1
a
|,利用基本
不等式求得它的最小值.
解答:解:由直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,
可得 (a2+1)+a2(-2b)=-1,可得b=
1
2
+
1
a2
,
∴|ab|=|
a
2
+
1
a
|=|
a
2
|+|
1
a
|≥2
1
2
=
2
,
當且僅當|
a
2
|=|
1
a
|時,即a=±
2
時,取等號,
故|ab|的最小值為
2

故答案為
2
點評:本題主要考查兩條直線垂直的性質,基本不等式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、命題:“已知函數(shù)f(x),若f(x+1)與f(x-1)均為奇函數(shù),則f(x)為奇函數(shù),”為直命題B、“x>1”是“|x|>1”的必要不充分條件C、若“p且q”為假命題,則p,q均為假命題D、命題p:”?x∈R,使得x2+x+1<0”,則?p:”?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江西省高三上學期開學模擬考試文科數(shù)學卷 題型:選擇題

平面直向坐標系中,O為坐標原點,已知兩點A(3,1) B(-1,3)若點C滿足,其中 ∈R且+=1,則點C的軌跡方程為       。

    A.     B.3x+2y-11=0      C.2x-y=0       D.x+2y=5

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:數(shù)學公式+數(shù)學公式=1,(a>b>0)與雙曲4x2-數(shù)學公式y2=1有相同的焦點,且橢C的離心e=數(shù)學公式,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案