對(duì)于數(shù)列{xn},從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為a1,公差為d的無(wú)窮等差數(shù)列{an}的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無(wú)窮等差數(shù)列{an}中,是否存在無(wú)窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請(qǐng)給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3)他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無(wú)窮等比數(shù)列{cn},總可以找到一個(gè)子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?

解:(1)由題意可得a32=a1a5,…..(2分)
即(a1+2d)2=a1(a1+4d),解得d=0.…..(4分)
(2)由題意可得an=1+3(n-1),如bn=4n-1便為符合條件的一個(gè)子數(shù)列.…..(7分)
下面證明:因?yàn)閎n=4n-1=(1+3)n-1=1+3+32+…+3n-1=1+3M,…..(9分)
這里M=+3+…+3n-2為正整數(shù),
所以,bn=1+3M=1+3[(M+1)-1]是{an}中的第M+1項(xiàng),….(11分)
(3)該命題為假命題.….(12分)
由已知可得,,
因此,又
=aqk-1(1+qn-k-2qm-k),…..(15分)
由于k,m,n是正整數(shù),且n>m,故n≥m+1,n-k≥m-k+1,
又q是滿足q>1的正整數(shù),則q≥2,
∴1+qn-k-2qm-k≥1+qm-k+1-2qm-k=1+qqm-k-2qm-k≥1+2qm-k-2qm-k=1>0,
所以,ck+cn>2cm,從而原命題為假命題.…..(18分)
分析:(1)由題意可得(a1+2d)2=a1(a1+4d),解之即可;
(2)可舉bn=4n-1,然后結(jié)合二項(xiàng)式定理證明即可;
(3)命題為假命題,由不等式的性質(zhì)可證ck+cn>2cm,故不成等差數(shù)列.
點(diǎn)評(píng):本題考查合情推理,涉及數(shù)列的等差等比的判定,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐匯區(qū)一模)對(duì)于數(shù)列{xn},從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為a1,公差為d的無(wú)窮等差數(shù)列{an}的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)a1,第三項(xiàng)a3和第五項(xiàng)a5
(1)若a1,a3,a5成等比數(shù)列,求d的值;
(2)在a1=1,d=3 的無(wú)窮等差數(shù)列{an}中,是否存在無(wú)窮子數(shù)列{bn},使得數(shù)列(bn)為等比數(shù)列?若存在,請(qǐng)給出數(shù)列{bn}的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3)他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>1)的無(wú)窮等比數(shù)列{cn},總可以找到一個(gè)子數(shù)列{bn},使得{dn}構(gòu)成等差數(shù)列”.于是,他在數(shù)列{cn}中任取三項(xiàng)ck,cm,cn(k<m<n),由ck+cn與2cm的大小關(guān)系去判斷該命題是否正確.他將得到什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐匯區(qū)一模)對(duì)于數(shù)列{xn},從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>0)的無(wú)窮等比數(shù)列{an}的子數(shù)列問(wèn)題.為此,他任取了其中三項(xiàng)ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比數(shù)列,求k,m,n之間滿足的等量關(guān)系;
(2)他猜想:“在上述數(shù)列{an}中存在一個(gè)子數(shù)列{bn}是等差數(shù)列”,為此,他研究了ak+an與2am的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3)他又想:在首項(xiàng)為正整數(shù)a,公差為正整數(shù)d的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫出一個(gè)正確命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無(wú)窮等差數(shù)列的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無(wú)窮等差數(shù)列中,是否存在無(wú)窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;

(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無(wú)窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于數(shù)列{xn},從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列.某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù)a,公比為正整數(shù)q(q>0)的無(wú)窮等比數(shù)列{an}的子數(shù)列問(wèn)題.為此,他任取了其中三項(xiàng)ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比數(shù)列,求k,m,n之間滿足的等量關(guān)系;
(2)他猜想:“在上述數(shù)列{an}中存在一個(gè)子數(shù)列{bn}是等差數(shù)列”,為此,他研究了ak+an與2an的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3)他又想:在首項(xiàng)為正整數(shù)a,公差為正整數(shù)d的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫出一個(gè)正確命題,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案