【題目】已知橢:()過(guò)點(diǎn),且橢圓的離心率為.過(guò)橢圓左焦點(diǎn)且斜率為1的直線與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)求線段的垂直平分線的方程;
(3)求三角形的面積.(為坐標(biāo)原點(diǎn))
【答案】(1);(2);(3).
【解析】
(1)由條件得到,求橢圓方程;
(2)直線的方程是,與橢圓方程聯(lián)立求線段的中點(diǎn),寫(xiě)出垂直平分線方程;
(3)利用弦長(zhǎng)公式求出,再利用點(diǎn)到直線的距離公式求出點(diǎn)到直線的距離,進(jìn)而可計(jì)算出三角形的面積.
(1)由題意可知,, ,,
橢圓的方程是;
(2)橢圓的左焦點(diǎn) ,直線的方程是 ,
與橢圓方程聯(lián)立,得,
,,
代入直線的方程得,線段的中點(diǎn)是,
并且線段的垂直平分線的斜率是-1,
線段的垂直平分線的方程是,即;
(3)由(2)可知, ,
,
原點(diǎn)到直線的距離,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),
(ⅰ)求的單調(diào)區(qū)間;
(ⅱ)若在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù);
(2)若a,b分別為的最大零點(diǎn)和最小零點(diǎn),當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是一個(gè)各位數(shù)字都不是0且沒(méi)有重復(fù)數(shù)字的三位數(shù),將組成的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為,按從大到小排成的三位數(shù)記為,(例如,則,)閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè),輸出的結(jié)果=( )
A. 693 B. 594 C. 495 D. 792
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點(diǎn)的個(gè)數(shù);
(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,離心率為的橢圓過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線上存在點(diǎn),且過(guò)點(diǎn)的橢圓的兩條切線相互垂直,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),求的單調(diào)區(qū)間;
(2)若有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com