已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左,右焦點(diǎn),若橢圓的右準(zhǔn)線上存在一點(diǎn)P,使得線段PF1的垂直平分線過點(diǎn)F2,則離心率的范圍是
 
分析:設(shè)點(diǎn)P(
a2
c
,m),則由中點(diǎn)公式可得線段PF1的中點(diǎn)K的坐標(biāo),根據(jù) 線段PF1的斜率與 KF2的斜率之積等于-1,求出 m2 的解析式,再利用 m2≥0,得到3e4+2e2-1≥0,求得 e 的范圍,再結(jié)合橢圓離心率的范圍進(jìn)一步e 的范圍.
解答:解:由題意得  F1(-c,0)),F(xiàn)2 (c,0),設(shè)點(diǎn)P(
a2
c
,m),則由中點(diǎn)公式可得線段PF1的中點(diǎn)
K(
a2-c2
2c
,
m
2
 ),∴線段PF1的斜率與 KF2的斜率之積等于-1,∴
m-0
a2
c
+c
m
2
-0
a2-c2
2c
-c
=-1,
∴m2=-(
a2
c
+c)•(
a2
c
-3c
)≥0,∴a4-2a2c2-3 c4≤0,
∴3e4+2e2-1≥0,∴e2
1
3
,或 e2≤-1(舍去),∴e≥
3
3

又橢圓的離心力率  0<e<1,故  
3
3
≤e<1,故答案為[
3
3
,1).
點(diǎn)評(píng):本題考查線段的中點(diǎn)公式,兩直線垂直的性質(zhì),以及橢圓的簡單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點(diǎn)F1,F(xiàn)2關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn),P為雙曲線右支上的一點(diǎn),
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點(diǎn),過點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點(diǎn),P是雙曲線的上一點(diǎn),若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案