【題目】某商區(qū)停車(chē)場(chǎng)臨時(shí)停車(chē)按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車(chē)一次停車(chē)不超過(guò)1小時(shí)收費(fèi)6元,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)8元不足1小時(shí)的部分按1小時(shí)計(jì)算現(xiàn)有甲、乙二人在該商區(qū)臨時(shí)停車(chē),兩人停車(chē)都不超過(guò)4小時(shí).

1若甲停車(chē)1小時(shí)以上且不超過(guò)2小時(shí)的概率為,停車(chē)付費(fèi)多于14元的概率為,求甲停車(chē)付費(fèi)恰為6元的概率;

若每人停車(chē)的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車(chē)付費(fèi)之和為36元的概率.

【答案】1;(2

【解析】

試題(1)根據(jù)互斥事件和對(duì)立事件的概率公式可解答;(2)列舉出甲、乙二人的停車(chē)費(fèi)用構(gòu)成的基本事件情況共有種,甲、乙二人停車(chē)付費(fèi)之和為元的情況共有種情況,根據(jù)古典概型概率公式可得甲、乙二人停車(chē)付費(fèi)之和為元的概率.

試題解析:(1)解:設(shè)甲臨時(shí)停車(chē)付費(fèi)恰為為事件

所以甲臨時(shí)停車(chē)付費(fèi)恰為元的概率是

2)解:設(shè)甲停車(chē)付費(fèi)元,乙停車(chē)付費(fèi)元,其中

則甲、乙二人的停車(chē)費(fèi)用構(gòu)成的基本事件空間為:

,共種情形.

其中,種情形符合題意.

甲、乙二人停車(chē)付費(fèi)之和為的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足:

(1)求的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和;

(3)在(2)的條件下,對(duì)任意,都成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosx(sinx+cosx)﹣
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;

(2)已知點(diǎn) 為圓上的點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠A=30°a=4,b=5,那么滿足條件的△ABC( 。

A. 無(wú)解 B. 有一個(gè)解 C. 有兩個(gè)解 D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為( )
A.或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓.點(diǎn)分別是圓上的動(dòng)點(diǎn),為直線上的動(dòng)點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案