如圖,A1A⊥面ABCD,將四邊形ABCD沿平移至A1B1C1D1,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.

(Ⅰ)求異面直線AC1與BC所成的角余弦值;

(Ⅱ)求證:BD⊥平面ACC1;

(Ⅲ)設M是線段BD上的點,當DM為何值時,D1M⊥平面A1C1D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A、B的任=A意一點,A1A=AB=2.
(1)求證:BC⊥平面A1AC;
(2)求三棱錐A1-ABC的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省高二上學期10月月考數(shù)學卷 題型:解答題

(本題滿分8分)

如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點,A1A= AB=2.

(Ⅰ)求證: BC⊥平面A1AC;

(Ⅱ)求三棱錐A1-ABC的體積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省北校區(qū)高二上學期第一次月考數(shù)學卷 題型:解答題

(本題滿分8分)如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點,A1A= AB=2.

(Ⅰ)求證: BC⊥平面A1AC;

(Ⅱ)求三棱錐A1-ABC的體積的最大值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分8分)

如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點,

A1A=AB=2.

(Ⅰ)求證:BC⊥平面A1AC;

(Ⅱ)求三棱錐A1-ABC的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學備考復習卷8:立體幾何(解析版) 題型:解答題

如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A、B的任=A意一點,A1A=AB=2.
(1)求證:BC⊥平面A1AC;
(2)求三棱錐A1-ABC的體積的最大值.

查看答案和解析>>

同步練習冊答案