對任意x∈R,給定區(qū)間[k-數(shù)學公式,k+數(shù)學公式](k∈z),設函數(shù)f(x)表示實數(shù)x與x的給定區(qū)間內(nèi)
整數(shù)之差的絕對值.
(1)當數(shù)學公式時,求出f(x)的解析式;當x∈[k-數(shù)學公式,k+數(shù)學公式](k∈z)時,寫出用絕對值符號表示的f(x)的解析式;
(2)求數(shù)學公式的值,判斷函數(shù)f(x)(x∈R)的奇偶性,并證明你的結論;
(3)當數(shù)學公式時,求方程數(shù)學公式的實根.(要求說明理由數(shù)學公式

解:(1)當x∈[-]時,
由定義知:x與0距離最近,f(x)=|x|,x∈[-]
當x∈[k-,k+](k∈z)時,
由定義知:k為與x最近的一個整數(shù),故
f(x)=|x-k|,x∈[k-,k+](k∈z);
(2)=,
判斷f(x)是偶函數(shù).
對任何x∈R,函數(shù)f(x)都存在,且存在k∈Z,滿足
k-≤x≤k+,f(x)=|x-k|,
由k-≤x≤k+,可以得出-k-≤-x≤-k+
即-x∈[-k-,-k+],
由(Ⅰ)的結論,f(-x)=|-x-(-k)|=|k-x|=|x-k|=f(x),
即f(x)是偶函數(shù).
(3)解:,即|x-k|-logax=0,
①當x>1時,|x-k|≥0>logax,
∴|x-k|-logax=0沒有大于1的實根;
②容易驗證x=1為方程|x-k|-logax=0的實根;
③當時,方程|x-k|-logax=0變?yōu)?-x-logax=0
設H(x)=logax-(1-x)(
則H′(x)=,
所以當時,H(x)為減函數(shù),H(x)>H(1)=0,
所以方程沒有的實根;
④當時,方程|x-k|-logax=0變?yōu)閤-logax=0
設G(x)=logax-x(),顯然G(x)為減函數(shù),
∴G(x)≥G()=H()>0,
所以方程沒有的實根.
綜上可知,當時,方程有且僅有一個實根,實根為1.
分析:(1)當x∈[-]時,根據(jù)定義,寫出f(x)的解析式;當x∈[k-,k+](k∈z)時,由定義知:k為與x最近的一個整數(shù),寫出解析式即可;(2)根據(jù)(1)求得
即可,利用奇偶性的定義即可判斷函數(shù)f(x)(x∈R)的奇偶性,(3)要求方程的根,即求|x-k|-logax=0的根,分類討論,去掉絕對值符號,即可求得方程根的個數(shù).
點評:此題是中檔題.考查新定義求函數(shù)的解析式,以及利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,分類討論求方程根的個數(shù)問題,體現(xiàn)了分類討論的思想,同時考查了利用應用知識分析解決問題的能力和運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對任意x∈R,給定區(qū)間[k-
1
2
,k+
1
2
](k∈z),設函數(shù)f(x)表示實數(shù)x與x的給定區(qū)間內(nèi)
整數(shù)之差的絕對值.
(1)當x∈[-
1
2
,
1
2
]
時,求出f(x)的解析式;當x∈[k-
1
2
,k+
1
2
](k∈z)時,寫出用絕對值符號表示的f(x)的解析式;
(2)求f(
4
3
),f(-
4
3
)
的值,判斷函數(shù)f(x)(x∈R)的奇偶性,并證明你的結論;
(3)當e-
1
2
<a<1
時,求方程f(x)-loga
x
=0
的實根.(要求說明理由e-
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意x∈R,給定區(qū)間[k-
1
2
,k+
1
2
](k∈Z),設函數(shù)f(x)表示實數(shù)x與x的給定區(qū)間內(nèi)整數(shù)之差的絕對值.
(1)寫出f(x)的解析式;
(2)設函數(shù)g(x)=loga
x
,(e-
1
2
<a<1),試證明:當x>1時,f(x)>g(x);當0<x<1時,f(x)<g(x);
(3)求方程f(x)-loga
x
=0的實根,(e-
1
2
<a<1).

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省杭州高級中學高三第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

對任意x∈R,給定區(qū)間[k-,k+](k∈z),設函數(shù)f(x)表示實數(shù)x與x的給定區(qū)間內(nèi)
整數(shù)之差的絕對值.
(1)當時,求出f(x)的解析式;當x∈[k-,k+](k∈z)時,寫出用絕對值符號表示的f(x)的解析式;
(2)求的值,判斷函數(shù)f(x)(x∈R)的奇偶性,并證明你的結論;
(3)當時,求方程的實根.(要求說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省鹽城中學高考數(shù)學二模試卷(解析版) 題型:解答題

對任意x∈R,給定區(qū)間[k-,k+](k∈z),設函數(shù)f(x)表示實數(shù)x與x的給定區(qū)間內(nèi)
整數(shù)之差的絕對值.
(1)當時,求出f(x)的解析式;當x∈[k-,k+](k∈z)時,寫出用絕對值符號表示的f(x)的解析式;
(2)求的值,判斷函數(shù)f(x)(x∈R)的奇偶性,并證明你的結論;
(3)當時,求方程的實根.(要求說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省高考數(shù)學最新預測試卷(解析版) 題型:解答題

對任意x∈R,給定區(qū)間[k-,k+](k∈Z),設函數(shù)f(x)表示實數(shù)x與x的給定區(qū)間內(nèi)整數(shù)之差的絕對值.
(1)寫出f(x)的解析式;
(2)設函數(shù)g(x)=loga,(<a<1),試證明:當x>1時,f(x)>g(x);當0<x<1時,f(x)<g(x);
(3)求方程f(x)-loga=0的實根,(<a<1).

查看答案和解析>>

同步練習冊答案