(2014·泰安模擬)設(shè)a是空間中的一條直線,α是空間中的一個(gè)平面,則下列說法正確的是(  )
A.過a一定存在平面β,使得β∥α
B.過a一定存在平面β,使得β⊥α
C.在平面α內(nèi)一定不存在直線b,使得a⊥b
D.在平面α內(nèi)一定不存在直線b,使得a∥b
B
當(dāng)a與α相交時(shí),不存在過a的平面β,使得β∥α,故A錯(cuò)誤;當(dāng)a與α平行時(shí),在平面α內(nèi)存在直線b,使得a∥b,故D錯(cuò)誤;平面α內(nèi)的直線b只要垂直于直線a在平面α內(nèi)的投影,則就必然垂直于直線a,故C錯(cuò)誤.直線a與其在平面α內(nèi)的投影所確定的平面β滿足β⊥α.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•福建)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.

(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是線段PB的中點(diǎn).

(1)求證:平面PAC;
(2)求證:AQ//平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點(diǎn).

(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過三棱柱ABC-A1B1C1的任意兩條棱的中點(diǎn)作直線,其中與平面ABB1A1平行的直線共有________條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

二面角為60°,A、B是棱上的兩點(diǎn),AC、BD分別在半平面內(nèi),,且AB=AC=,BD=,則CD的長為(  )
A.         B.        C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在四面體ABCD中,E、F分別是AC、BD的中點(diǎn),若CD=2AB=4,EFAB,則EF與CD所成的角為(  。

A.        B.      C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A—BCD,則在三棱錐A—BCD中,下列命題正確的是(  )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分別是線段AE,BC的中點(diǎn),則AD與GF所成的角的余弦值為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案