函數(shù)y=sin(
π
4
-2x)的單增區(qū)間為
 
考點(diǎn):正弦函數(shù)的圖象
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正弦函數(shù)的單調(diào)性即可得到結(jié)論.
解答: 解:由y=sin(
π
4
-2x)=-sin(2x-
π
4
),
由2kπ+
π
2
≤2x-
π
4
≤2kπ+
2
,k∈Z,
即kπ+
8
≤x≤kπ+
8
,k∈Z,
故函數(shù)的遞增區(qū)間為[kπ+
8
,kπ+
8
],k∈Z,
故答案為:[kπ+
8
,kπ+
8
],k∈Z
點(diǎn)評(píng):本題主要考查三角函數(shù)單調(diào)區(qū)間的求解,利用正弦函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示直角梯形ABCD中,AB∥DC,∠A=90°,AB=AD=2DC=4,畫(huà)出該梯形的直觀圖A′B′C′D′,并寫(xiě)出其做法(要求保留作圖過(guò)程的痕跡.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,2a9=a12+6,則a6=(  )
A、6B、8C、10D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列根式中與分?jǐn)?shù)指數(shù)冪的互化中,正確的是( 。
A、(-x)0.5=-
x
(x≠0)
B、
6y2
=y 
1
3
,(y<0)
C、(
x
y
 -
3
4
=
4(
y
x
)3
(xy≠0)
D、x -
1
3
=-
3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
2
sinωxcosωx-
3
2
sin2ωx+
3
4
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α是第三象限角,求:
(1)角
α
2
是第幾象限的角;
(2)角2α終邊的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等邊△ABC的邊長(zhǎng)為2,設(shè)
BC
=
a
,
CA
=
b
,
AB
=
c
,則
a
b
+
c
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足約束條件
x+y≤2
x≥1
y≥0
則z=2x+y的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x2-mx+3,當(dāng)x∈[-2,+∞)時(shí),f(x)為增函數(shù),當(dāng)x∈(-∞,-2]時(shí),函數(shù)f(x)為減函數(shù),則m=(  )
A、-4B、-8C、8D、無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案