【題目】高二學(xué)生小嚴(yán)利用暑假參加社會實(shí)踐,為了幫助貿(mào)易公司的購物網(wǎng)站優(yōu)化今年國慶節(jié)期間的營銷策略,他對去年10月1日當(dāng)天在該網(wǎng)站消費(fèi)且消費(fèi)金額不超過1000元的1000名(女性800名,男性200名)網(wǎng)購者,根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計(jì)圖表(消費(fèi)金額單位:元):

女性消費(fèi)情況:

消費(fèi)金額

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人數(shù)

5

10

15

男性消費(fèi)情況:

消費(fèi)金額

(0,200)

[200,400)

[400,600)

[600,800)

[800,1000)

人數(shù)

2

3

10

2

(1)現(xiàn)從抽取的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購者中隨機(jī)選出兩名發(fā)放網(wǎng)購紅包,求選出的這兩名網(wǎng)購者恰好是一男一女的概率;

(2)若消費(fèi)金額不低于600元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于600元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購達(dá)人’與性別有關(guān)?”

女性

男性

總計(jì)

網(wǎng)購達(dá)人

非網(wǎng)購達(dá)人

總計(jì)

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

,其中

【答案】(1);(2)見解析.

【解析】分析:(1)由題意結(jié)合分層抽樣的概念可得,利用列舉法可得從5名任意選2名,總的基本事件有10.事件選出的兩名購物者恰好是一男一女包含的基本事件有6..

(2)由題意繪制列聯(lián)表,計(jì)算觀測值可得,則在犯錯誤的概率不超過0.010的前提下可以認(rèn)為是否為網(wǎng)購達(dá)人與性別有關(guān)”.

詳解:(1)按分層抽樣女性應(yīng)抽取80名,男性應(yīng)抽取20.

,

抽取的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購者中有三位女性設(shè)為,,;兩位男性設(shè)為,.

5名任意選2名,總的基本事件有,,, ,,,,,,共10.

設(shè)選出的兩名購物者恰好是一男一女為事件”.

則事件包含的基本事件有,,,,6.

.

(2)列聯(lián)表如下表:

女性

男性

總計(jì)

網(wǎng)購達(dá)人

50

5

55

非網(wǎng)購達(dá)人

30

15

45

總計(jì)

80

20

100

.

所以在犯錯誤的概率不超過0.010的前提下可以認(rèn)為是否為網(wǎng)購達(dá)人與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,且cosC+=1.
(1)求角A的大;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=x﹣(a+1)lnx﹣ , 求函數(shù)h(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn . 已知a1=10,a2為整數(shù),且Sn≤S4
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是奇函數(shù).

1求常數(shù)的值;

2,試判斷函數(shù)的單調(diào)性,并加以證明;

3,且函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD= ,M為BC上的一點(diǎn),且BM= ,MP⊥AP.

(1)求PO的長;
(2)求二面角A﹣PM﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)D在橢圓上.DF1⊥F1F2 , =2 ,△DF1F2的面積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在y軸上的圓與橢圓在x軸的上方有兩個交點(diǎn),且圓在這兩個交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn),求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通項(xiàng)公式an;

(2)求數(shù)列{|an-n-2|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且定義域?yàn)?/span>.

(1)求關(guān)于的方程上的解;

(2)若在區(qū)間上單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;

(3)若關(guān)于的方程上有兩個不同的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案