為了了解某學校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,據(jù)此估計該校高中男生體重在的人數(shù)為( )

A.360 B.336 C.300 D.280

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(文)試卷(解析版) 題型:選擇題

已知定義在上的函數(shù)滿足:的圖象關于點對稱,且當時恒有,當時,,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(文)試卷(解析版) 題型:選擇題

設數(shù)列的前項和,若,且,則等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(理)試卷(解析版) 題型:填空題

若向量,,則函數(shù)在區(qū)間上的零點個數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年河北正定中學高二上月考一數(shù)學(理)試卷(解析版) 題型:選擇題

若不等式表示的平面區(qū)域為,均為內(nèi)一點,為坐標原點,,則下列判斷正確的是( )

A.的最小值為 B.的最小值為

C.的最大值為 D.的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓E的中心在原點,焦點在坐標軸上,且經(jīng)過($\sqrt{2},-\frac{\sqrt{2}}{2}$)與(1,$\frac{\sqrt{3}}{2}$)兩點.
(Ⅰ)求E的方程;
(Ⅱ)設直線l:y=kx+m(k≠0,m>0)與E交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求△OPQ面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,已知圓柱OO′的底面半徑為12,與底面成β角(其中cosβ=$\frac{12}{13}$,sinβ=$\frac{5}{13}$)的截面α截圓柱所得的平面圖形為橢圓,已知球C1,C2分別與圓柱的側(cè)面、底面相切,與截面α相切于點M、N,在圓柱OO′的體積為( 。
A.7500πB.7200πC.7800πD.8100π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=$\sqrt{3}$,則該三棱錐外接球的表面積為5π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直角坐標系中,以O為極點,x軸的正半軸為極軸,且兩坐標系取相同的長度單位.已知圓C的極坐標方程是ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=-1+2\sqrt{2t}}\end{array}\right.$(t為參數(shù)),直線l和圓C交于A,B兩點,P是圓C上不同于A,B的任意一點,
(1)求圓C的圓心的極坐標;
(2)求三角形PAB面積的最大值.

查看答案和解析>>

同步練習冊答案