已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t;
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.
(1)x=y=0得f(0)=-1
x=y=-1得f(-2)=2f(-1)+2
而f(-2)=-2,∴f(-1)=-2
x=1,y=-1得f(0)=f(1)+f(-1)
∴f(1)=1.

(2)x=n,y=1得f(n+1)=f(n)+f(1)+n+1=f(n)+n+2
∴f(n+1)-f(n)=n+2,
∴當(dāng)n∈N+時,f(n)=f(1)+[3+4++(n+1)]=
1
2
(n2+3n-2)
則f(n)-n=
1
2
(n2+n-2)

而當(dāng)n∈N+,且n>1時,n2+n-2>0,
∴f(n)>n,則對一切大于1的正整數(shù)t,恒有f(t)>t.

(3)∵y=-x時f(x-x)=f(x)+f(-x)+1-x2
∴f(x)=x2-2-f(-x)
∵當(dāng)x∈N+時由(2)知f(x)=
1
2
(x2+3x-2)

當(dāng)x=0時,f(0)=-1=
1
2
[02+3×0-2]

當(dāng)x為負(fù)整數(shù)時,-x∈N+,則f(-x)=
1
2
(x2-3x-2)
,
f(x)=x2-2-
1
2
(x2-3x-2)=
1
2
(x2+3x-2)

故對一切x∈Z時,有f(x)=
1
2
(x2+3x-2)

∴當(dāng)t∈Z時,由f(t)=t得t2+t-2=0,即t=1或t=2
∴滿足f(t)=t的整數(shù)t有兩個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t;
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市漣水一中高一(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t;
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫一中高三(上)10月段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t;
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年云南省高三數(shù)學(xué)一輪復(fù)習(xí)單元測試06:數(shù)列(解析版) 題型:解答題

已知函數(shù)f(t)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)證明:對一切大于1的正整數(shù)t,恒有f(t)>t;
(3)試求滿足f(t)=t的整數(shù)t的個數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案