分析 (1)根據(jù)三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,得到側(cè)棱BB1與AB垂直,再由AB⊥BC,且BC∩BB1=B,即可得證;
(2)如圖,取AC的中點(diǎn)G,連結(jié)C1F,GF,易得AE∥C1G,確定出∠GC1F就是異面直線AE與C1F所成的角,求出即可.
解答 (1)證明:在三棱柱ABC,A1B1C1中,BB1⊥底面ABC,
∴BB1⊥AB,
又∵AB⊥BC,BC∩BB1=B,
∴AB⊥平面B1BCC1;
(2)解:如圖,取AC的中點(diǎn)G,連結(jié)C1F,GF,易得AE∥C1G,
∴∠GC1F就是異面直線AE與C1F所成的角,
由(1)可知直線AB⊥平面BCC1B1,
∴AB⊥C1F,
又AB∥GF,
∴GF⊥C1F,
在Rt△ABC中,根據(jù)勾股定理得:AB=$\sqrt{A{C}^{2}-B{C}^{2}}$=$\sqrt{3}$,
∴GF=$\frac{\sqrt{3}}{2}$,
又在Rt△CC1G中,根據(jù)勾股定理得:C1G=$\sqrt{C{G}^{2}+C{{C}_{1}}^{2}}$=$\sqrt{5}$,
∴sin∠GC1F=$\frac{GF}{{C}_{1}G}$=$\frac{\sqrt{15}}{10}$,
則異面直線AE與C1F所成的角的正弦值為$\frac{{\sqrt{15}}}{10}$.
點(diǎn)評(píng) 此題考查了異面直線及其所成的角,平面與平面垂直的判定,確定出異面直線所求的角是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2 | B. | f(x)=2x | C. | f(x)=x3 | D. | f(x)=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{x|x=kπ+\frac{π}{3},k∈z}\right\}$ | B. | $\left\{{x|x=kπ-\frac{π}{3},k∈z}\right\}$ | C. | $\left\{{x|x=2kπ±\frac{π}{3},k∈z}\right\}$ | D. | $\left\{{x|x=kπ±\frac{π}{3},k∈z}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7π}{4}$ | B. | $\frac{5π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,\sqrt{3})$ | B. | $(\sqrt{3},1)$ | C. | $(-1,\sqrt{3})$ | D. | $(\sqrt{3},-1)$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com