【題目】平面直角坐標(biāo)系xOy中,拋物線的焦點為F,過F的動直線lM、N兩點.

1)若l垂直于x軸,且線段MN的長為1,求的方程;

(2)若,求線段MN的中點P的軌跡方程;

(3)求的取值范圍.

【答案】(1)

(2)

(3)

【解析】

1)由題意,(,±)在拋物線上,代入可求出p,問題得一解決,

2)利用點差法和中點坐標(biāo)公式和點斜式方程即可求出,

3)拋物線Γ:y22pxp0),設(shè)lxmy,Mx1,y1),y10,Nx2,y2),y20根據(jù)根系數(shù)的關(guān)系和兩角和的正切公式,化簡整理即可求出.

解:(1)由題意,(,±)在拋物線上,代入可求出p,

∴Γ的方程為y2x,

2)拋物線Γ:y24x,設(shè)Mx1,y1),Nx2,y2),Px0,y0

,

∴(y1+y2)(y1y2)=4x1+x2),

k

于是lyy0xx0),

l過點F1,0),

∴﹣y01x0),

y022x01),

故線段MN的中點P的軌跡方程為y22x1

3)拋物線Γ:y22pxp0),設(shè)lxmy,Mx1,y1),y10,Nx2,y2),y20,

y22myp20

y1+y22mp,y1y2=﹣p2,

tanMONtan(∠MOF+NOF,

,

,

,

,

tanMON的取值范圍是(﹣∞,]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點

1)求橢圓的方程;

2)是否存在經(jīng)過點的直線,它與橢圓相交于兩個不同點,且滿足為坐標(biāo)原點)關(guān)系的點也在橢圓上,如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C1ab0)的右焦點為F,A2,0)是橢圓的右頂點,過F且垂直于x軸的直線交橢圓于P,Q兩點,且|PQ|3

1)求橢圓的方程;

2)過點A的直線l與橢圓交于另一點B,垂直于l的直線l與直線l交于點M,與y軸交于點N,若FBFN|MO||MA|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點.

(1)求證:圖2中,平面平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點.

(1)若平面平面,求的長;

(2)是否存在點,使直線與平面所成的角是?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線有兩個不同的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

在其定義域上單調(diào)遞減,求的取值范圍;

存在兩個不同極值點,且,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,O為AD中點,AB=1,AD=2,AC=CD=.

(1)證明:直線AB∥平面PCO;

(2)求二面角P-CD-A的余弦值;

(3)在棱PB上是否存在點N,使AN⊥平面PCD,若存在,求線段BN的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.

C的普通方程和直線的傾斜角;

設(shè)點(0,2),交于兩點,求.

查看答案和解析>>

同步練習(xí)冊答案