已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC邊上取點(diǎn)E,使PE⊥DE,則滿足條件的E點(diǎn)有兩個(gè)時(shí),a的取值范圍是   
【答案】分析:以A點(diǎn)為原點(diǎn),AB、AD、AP所在直線為x,y,z軸,建立空間直角坐標(biāo)系,求出的坐標(biāo),根據(jù)向量垂直數(shù)量積為零建立等量關(guān)系,使方程有兩個(gè)不同的根即可求出a的值.
解答:解:以A點(diǎn)為原點(diǎn),AB、AD、AP所在直線為x,y,z軸,如圖所示.
設(shè)P(0,0,b),D(0,a,0),E(3,x,0)
PE=(3,x,-b),DE=(3,x-a,0)
∵PE⊥DE,∴PE•DE=0,
∴9+x(x-a)=0,即x2-ax+9=0.
由題意可知方程有兩個(gè)不同根,
∵△>0,即a2-4×9>0,∴a>6.
故答案為a>6
點(diǎn)評(píng):本題主要考查了直線與平面垂直的性質(zhì),以及空間向量,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知矩形ABCD中,AB=2
2
,BC=1.以AB的中點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系xoy.
(1)求以A,B為焦點(diǎn),且過C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,2)的直線l與(1)中的橢圓交于M,N兩點(diǎn),是否存在直線l,使得以線段MN為直徑的圓恰好過原點(diǎn)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到A1點(diǎn),且A1在平面BCD上的射影O恰好在CD上.
(1)求證:BC⊥A1D;
(2)求證:平面A1BC⊥平面A1BD;
(3)求三棱錐A1-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,|AD|=3,|AB|=4.將矩形ABCD沿對(duì)角線BD折起,使得面BCD⊥面ABD.現(xiàn)以D為原點(diǎn),DB作為y軸的正方向,建立如圖空間直角坐標(biāo)系,此時(shí)點(diǎn)A恰好在xDy坐標(biāo)平面內(nèi).試求A,C兩點(diǎn)的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州二模)已知矩形ABCD中,AB=2,AD=5.E,F(xiàn)分別在AD,BC上.且AE=1,BF=3,沿EF將四邊形AEFB折成四邊形A′EFB′,使點(diǎn)B′在平面CDEF 上的射影H在直線DE上.
(I)求證:A′D∥平面B′FC
(II)求二面角A′-DE-F的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD中,A(-4,4)、D(5,7),中心E在第一象限內(nèi)且與y軸的距離為一個(gè)單位,動(dòng)點(diǎn)P(x,y)沿矩形一邊BC運(yùn)動(dòng),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案