設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且

    (Ⅰ)求點(diǎn)M的軌跡C的方程;

    (Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.

        (1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;

        (2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

解:(Ⅰ)設(shè)點(diǎn),,則由題意知.

,,且,

.

所以于是

,所以.

所以,點(diǎn)M的軌跡C的方程為.………………………………(3分)

(Ⅱ)設(shè) .

聯(lián)立

.       

所以,,即.    ①

    

(i)依題意,,即.

.

,即.

,,解得.

代入①,得.

所以,的取值范圍是

)曲線軸正半軸的交點(diǎn)為.

依題意,, 即.

于是.

,

,

.

化簡(jiǎn),得.

解得,,且均滿足.

當(dāng)時(shí),直線的方程為,直線過(guò)定點(diǎn)(舍去);

當(dāng)時(shí),直線的方程為,直線過(guò)定點(diǎn).   

所以,直線過(guò)定點(diǎn).  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線l過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,設(shè)點(diǎn)P(x,y),定義[OP]=|x|+|y|,其中O為坐標(biāo)原點(diǎn).對(duì)于下列結(jié)論:
①符合[OP]=1的點(diǎn)P的軌跡圍成的圖形的面積為2;
②設(shè)點(diǎn)P是直線:
5
x+2y-2=0
上任意一點(diǎn),則[OP]min=
2
3
;
③設(shè)點(diǎn)P是直線:y=kx+1(k∈R)上任意一點(diǎn),若使得[OP]最小的點(diǎn)P有無(wú)數(shù)個(gè),則k的值是k=±1;
④設(shè)點(diǎn)P是圓x2+y2=1上任意一點(diǎn),則[OP]max=
2

其中正確的結(jié)論序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省武漢市武昌區(qū)高三上學(xué)期期末調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且

(Ⅰ)求點(diǎn)M的軌跡C的方程;

(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.

(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;

(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線l過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP,垂足為Po,且=
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線l過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案