【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)當(dāng)有最大值,且最大值大于時,求的取值范圍.
【答案】(1)見解析;(2)
【解析】試題分析:(1)先求導(dǎo)數(shù),再根據(jù)m正負(fù)討論導(dǎo)函數(shù)零點情況,根據(jù)對應(yīng)導(dǎo)函數(shù)符號確定函數(shù)單調(diào)性,(2)先根據(jù)單調(diào)性確定由最大值的條件,以及最大值取法,再根據(jù)最大值大于m-2,得不等式,利用導(dǎo)數(shù)研究其單調(diào)性,根據(jù)單調(diào)性解不等式得的取值范圍.
試題解析:(1)的定義域為
若,則∴在上單調(diào)遞增
若 令,則
令,則
∴在上單調(diào)遞增.在上單調(diào)遞減.
綜上,當(dāng)時, 在上單調(diào)遞增.
當(dāng)時, 在上單調(diào)遞增,在上單調(diào)遞減.
(2)由(1)知當(dāng)時, 在上無最大值;
當(dāng)時, 在處取得最大值.
最大值為
又等價于
令,則在上單調(diào)遞增. .
∴當(dāng)時, ;當(dāng)時, .
∴的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點是橢圓: 的頂點, 為橢圓的左焦點且橢圓經(jīng)過點.
(1)求橢圓的方程;
(2)過橢圓的右頂點作斜率為()的直線交橢圓于另一點,連結(jié)并延長交橢圓于點,當(dāng)的面積取得最大值時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且僅有兩個整數(shù)解,則實數(shù)a的取值范圍為( )
A.(﹣ , ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且.
(1)確定的解析式;
(2)判斷并證明在上的單調(diào)性;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知表示兩個不同的平面, 表示兩條不同直線,對于下列兩個命題:
①若,則“”是“”的充分不必要條件;
②若,則“”是“且”的充要條件.判讀正確的是( )
A. ①②都是真命題 B. ①是真命題,②是假命題
C. ①是假命題,②是真命題 D. ①②都是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個自然數(shù)若與它的“反序數(shù)”相等,這個自然數(shù)就稱為一個“魔幻數(shù)”如數(shù)“”、“”都是“魔幻數(shù)”在的元素中,去掉所有的“魔幻數(shù)”后,形成一個不含“魔幻數(shù)”的子集,則中的元素共有______個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時, .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點A(0,4),且在兩坐標(biāo)軸上的截距之和為1.
(Ⅰ)求直線l的方程;
(Ⅱ)若直線l1與直線l平行,且l1與l間的距離為2,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的焦點為,離心率為.
(1)求橢圓方程;
(2)設(shè)過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且, , 成等比數(shù)列,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com