已知函數(shù)若直線與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若函數(shù)對任意的,均有,則稱函數(shù)具有性質(zhì).
(Ⅰ)判斷下面兩個(gè)函數(shù)是否具有性質(zhì),并說明理由.
①; ②.
(Ⅱ)若函數(shù)具有性質(zhì),且(),
求證:對任意有;
(Ⅲ)在(Ⅱ)的條件下,是否對任意均有.若成立給出證明,若不成立給出反例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)分別在、處取得極小值、極大值.平面上點(diǎn)、的坐標(biāo)分別為、,該平面上動點(diǎn)滿足,點(diǎn)是點(diǎn)關(guān)于直線的對稱點(diǎn).
(Ⅰ)求點(diǎn)、的坐標(biāo); (Ⅱ)求動點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,定義為兩點(diǎn),之間的“折線距離”. 在這個(gè)定義下,給出下列命題:
①到原點(diǎn)的“折線距離”等于1的點(diǎn)的軌跡是一個(gè)正方形;
②到原點(diǎn)的“折線距離”等于1的點(diǎn)的軌跡是一個(gè)圓;
③到兩點(diǎn)的“折線距離”相等的點(diǎn)的軌跡方程是;
④到兩點(diǎn)的“折線距離”差的絕對值為1的點(diǎn)的軌跡是兩條平行直線.
其中正確的命題有 .(請?zhí)钌纤姓_命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為正方形,且PA=AD=2,E、F分別為棱AD、PC的中點(diǎn).
(Ⅰ)求異面直線EF和PB所成角的大;
(Ⅱ)求證:平面PCE⊥平面PBC;
(Ⅲ)求二面角E-PC-D的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com