已知,對(duì)于,定義假設(shè),那么解析式是(   )

A       B      C       D 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)一模)假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=數(shù)學(xué)公式;
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:閘北區(qū)一模 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市閘北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=;
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案