精英家教網 > 高中數學 > 題目詳情

設數列{an}前n項和為Sn,若a1=1,Sn=nann(n-1).n=1,2,3,…

(1)求數列{an}的通項公式;

(2)若bn,數列{bn}前項和為Tn,證明:≤Tn;

(3)是否存在自然數n,使S1+…+=63?若存在,求出n的值;若不存在,說明理由.

答案:
解析:

  解:(1)當時,

  

  

  ,;4分

  (2)

  

  單調遞增

  

  又

  

  綜上;9分

  (3)

  

  

  ;14分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an} 前n項和Sn=
n(an+1)2
,n∈N*且a2=a

(1)求數列{an} 的通項公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}前n項和Sn,且Sn=2an-2,n∈N+
(Ⅰ)試求數列{an}的通項公式;
(Ⅱ)設cn=
nan
,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數,m≠-3且m≠0.
(1)求證:{an}是等比數列;
(2)若數列{an}的公比滿足q=f(m)且b1=a1,bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通項公式;
(3)若m=1時,設Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數k,使得對任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}前n項和為Sn,已知a1=a(a≠4),an+1=2Sn+4n(n∈N*
(Ⅰ)設b n=Sn-4n,求證:數列{bn}是等比數列;
(Ⅱ)求數列{an}的通項公式;
(Ⅲ)若an+1≥an(n∈N*),求實數a取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}前n項和為Sn,首項為x(x∈R),滿足Sn=nan-
n(n-1)2
,n∈N+
(1)求證:數列{an}為等差數列;
(2)求證:若數列{an}中存在三項構成等比數列,則x為有理數.

查看答案和解析>>

同步練習冊答案