用_________表示點(diǎn),用曲線上點(diǎn)的坐標(biāo)(x,y)所滿足的方程f(x,y)=0表示_________,通過研究方程的性質(zhì)間接地研究曲線的性質(zhì).這種借助坐標(biāo)系研究幾何圖形的方法叫做坐標(biāo)法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整數(shù).對平面上任一點(diǎn)A0,記A1為A0關(guān)于點(diǎn)P1的對稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對稱點(diǎn).
(1)求向量
A0A2
的坐標(biāo);
(2)當(dāng)點(diǎn)A0在曲線C上移動時(shí),點(diǎn)A2的軌跡是函數(shù)y=f(x)的圖象,其中f(x)是以3位周期的周期函數(shù),且當(dāng)x∈(0,3]時(shí),f(x)=lgx.求以曲線C為圖象的函數(shù)在(1,4]上的解析式;
(3)對任意偶數(shù)n,用n表示向量
A0An
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,過點(diǎn)P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點(diǎn)為Q1,設(shè)Q1點(diǎn)在x軸上的投影是點(diǎn)P1;又過點(diǎn)P1作曲線C的切線,切點(diǎn)為Q2,設(shè)Q2在x軸上的投影是P2;…;依此下去,得到一系列點(diǎn)Q1,Q2,…,Qn,…,設(shè)點(diǎn)Qn的橫坐標(biāo)為an
(Ⅰ)試求數(shù)列{an}的通項(xiàng)公式an;(用k的代數(shù)式表示)
(Ⅱ)求證:an≥1+
n
k-1
;
(Ⅲ)求證:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=
1
2
(x2+x)
,點(diǎn)A(-1,0),B(0,2),點(diǎn)E是曲線C上的一個(gè)動點(diǎn)(E不在直線AB上),設(shè)E(x0,y0),C,D在直線AB上,ED⊥AB,EC⊥x軸.
(1)用x0表示
AE
AB
方向上的投影;
(2)
|
AC
|
|
AD
|
2
是否為定值?若是,求此定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,已知點(diǎn), ,…, 其中n是正整數(shù). 對平面上任一點(diǎn), 記A1A0關(guān)于點(diǎn)P1的對稱點(diǎn), A2A1關(guān)于點(diǎn)P2的對稱點(diǎn), ┄, ANAN-1關(guān)于點(diǎn)PN的對稱點(diǎn).

   (1)求向量的坐標(biāo);

   (2)當(dāng)點(diǎn)A0在曲線C上移動時(shí), 點(diǎn)A2的軌跡是函數(shù)的圖象,其中是以3為周期的周期函數(shù),且當(dāng)x∈(0,3)時(shí),=lgx.求以曲線C為圖象的函數(shù)在(1,4)上的解析式;

   (3)對任意偶數(shù)n,用n表示向量的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案