在等差數(shù)列{an}中,a1+a3=20,且a3是a1與a6的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)a1、公差d及前n項(xiàng)和Sn
考點(diǎn):等比數(shù)列的性質(zhì),等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的通項(xiàng)公式,結(jié)合等比中項(xiàng),建立方程,即可得到結(jié)論.
解答: 解:由已知有
a1+a3=20
a32=a1a6
,
a1+d=10
4d2=a1d

①當(dāng)d=0時(shí),a1=10,Sn=na1=10n;
②當(dāng)d≠0時(shí),由
a1+d=10
4d2=a1d
a1+d=10
4d=a1

a1=8
d=2
,
Sn=na1+
n(n-1)
2
d=8n+n(n-1)=n2+7n

綜上可得a1=10,d=0,Sn=10n或a1=8,d=2,Sn=n2+7n
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的計(jì)算,利用條件建立方程求出首項(xiàng)和公差是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

是虛數(shù)單位,復(fù)數(shù)z=(x+2i)(1+i),x∈R.若z的虛部為4,則x等于( 。
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:y=5x+2是曲線C:f(x)=
1
3
x3-x2+2x+m的一條切線,g(x)=ax2+2x-25
(1)求切點(diǎn)坐標(biāo)及m的值;
(2)當(dāng)m∈Z時(shí),存在x∈[0,+∞)使f(x)≤g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)2×(
32
×
3
6+(
2
2
)
4
3
-4×(
16
49
)
1
2
-
42
×80.25+(-2014)0
(2)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式ax2+2x+c<0的解集為{x|-3<x<2},
(1)求a,c的值;
(2)解關(guān)于x的不等式:
a
2
x2+2ax+c>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c(其中b,c為實(shí)常數(shù)).
(1)若b>2,且y=f(sinx)的最大值為5,最小值為-1,求函數(shù)的解析式;
(2)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0],若存在,求出f(x)的解析式;
(3)已知集合A={x|x2+Bx+C=x}中有且僅有一個(gè)元素,若f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線3x-y=0上且在第一象限,圓C與x軸相切,且被直線x-y=0截得的弦長為2
7

(1)求圓C的方程;
(2)若點(diǎn)P(x,y)是圓C上的點(diǎn),滿足
3
x+y-m≤0
恒成立,求m的取值范圍;
(3)將圓C向左移1個(gè)單位,再向下平移3個(gè)單位得到圓C1,P為圓C1上第一象限內(nèi)的任意一點(diǎn),過點(diǎn)P作圓C1的切線l,且l交x軸于點(diǎn)A,交y軸于點(diǎn)B,設(shè)
OM
=
OA
+
OB
,求丨
OM
丨的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2|x-1|-3|x|,對(duì)任意的x有f(x)≤m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為x億元(x∈[a,b]),其中用于風(fēng)景區(qū)改造費(fèi)用為y億元.該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列條件:
①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;
②每年用于風(fēng)景區(qū)改造費(fèi)用不得低于改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于改造生態(tài)環(huán)境總費(fèi)用的22%.
(1)若a=2,b=2.5,請(qǐng)你分析能否采用函數(shù)模型y=
1
100
(x3+4x+16)作為生態(tài)環(huán)境改造投資方案;
(2)若a,b取正整數(shù),并用函數(shù)模型y=
1
100
(x3+4x+16)作為生態(tài)環(huán)境改造投資方案,請(qǐng)你求出a,b的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案