6.(1)用輾轉(zhuǎn)相除法求840與1764的最大公約數(shù).
(2)用更相減損術(shù)求561與255的最大公約數(shù).

分析 (1)用輾轉(zhuǎn)相除法即可得出.
(2)用更相減損術(shù)即可得出.

解答 解:(1)1746=840×2+84,
840=84×10+0,
所以840與1764的最大公約數(shù)為84.
(2)561-255=306,
306-255=51,
255-51=204,
204-51=153,
153-51=102,
102-51=51
所以459與357的最大公約數(shù)為51.

點評 本題考查了輾轉(zhuǎn)相除法、更相減損術(shù)求最大公約數(shù),考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn-1+kan=tan2-1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=$\frac{1}{2}$,t=$\frac{1}{4}$,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C滿足:過橢圓C的右焦點F($\sqrt{2}$,0)且經(jīng)過短軸端點的直線的傾斜角為$\frac{π}{4}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,若點A在直線y=2上,點B在橢圓C上,且OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)橢圓$\frac{x^2}{3}+\frac{y^2}{2}$=1右焦點為F2,點P是圓x2+y2-6x+8=0上的動點,則PF2的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={1,2,3},N={2,3},則(  )
A.M=NB.M∩N=∅C.M⊆ND.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)在R上的導(dǎo)函數(shù)是f′(x),并且滿足xf′(x)<0,若a=f(0.33),b=f(log2$\sqrt{3}$),c=f(log3$\sqrt{2}$),則( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$;g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2015}}{2015}$;設(shè)函數(shù)F(x)=[f(x+3)]•[g(x-4)],且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若sin2A,sin2B,sin2C成等差數(shù)列.
(1)求tanA+3tanC的最小值;
(2)在(1)中取最小值的條件下,若$c=2\sqrt{10}$,求S△ABC

查看答案和解析>>

同步練習(xí)冊答案