分析 如圖所示,設直三棱柱的底面面積為S,則V=aS.當ADE平面為水平面時,容器內(nèi)的油是最理想的剩余量.連接AB1,AC1.${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}$aS=$\frac{1}{3}V$.設${V}_{A-DE{C}_{1}{B}_{1}}$=V1,VA-BCED=V2.可得$\frac{{V}_{1}}{{V}_{2}}$=$\frac{{S}_{DE{C}_{1}{B}_{1}}}{{S}_{BCED}}$=$\frac{b+c}{a-c+a-b}$,${V}_{1}+{V}_{2}=\frac{2}{3}V$,解出V1即可得出.
解答 解:如圖所示,
設直三棱柱的底面面積為S,則V=aS.
當ADE平面為水平面時,容器內(nèi)的油是最理想的剩余量.
連接AB1,AC1.
${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}$aS=$\frac{1}{3}V$.
設${V}_{A-DE{C}_{1}{B}_{1}}$=V1,VA-BCED=V2.
則$\frac{{V}_{1}}{{V}_{2}}$=$\frac{{S}_{DE{C}_{1}{B}_{1}}}{{S}_{BCED}}$=$\frac{b+c}{a-c+a-b}$,${V}_{1}+{V}_{2}=\frac{2}{3}V$,
解得V1=$\frac{b+c}{3a}V$.
∴V1+${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{b+c}{3a}V$+$\frac{1}{3}V$=$\frac{a+b+c}{3a}V$.
因此,容器內(nèi)的油的最理想的剩余量是$\frac{a+b+c}{3a}V$.
點評 本題考查了空間位置關系、分割計算體積,考查了空間想象能力、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3+4i | B. | 0 | C. | -4+3i | D. | -4-3i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com