如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求證:平面PCD⊥平面PAC;

(Ⅱ)求四棱錐P—ACDE的體積.

 

【答案】

(Ⅰ)先證  (Ⅱ)

【解析】

試題分析:(Ⅰ)證明:因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013080912413589715777/SYS201308091242487938671013_DA.files/image003.png">ABC=45°,AB=2,BC=4,所以在中,由余弦定理得:,解得,

所以,即,又PA⊥平面ABCDE,所以PA⊥

又PA,所以,又AB∥CD,所以,又因?yàn)?/p>

,所以平面PCD⊥平面PAC;

(Ⅱ)由(Ⅰ)知,所以,又AC∥ED,所以四邊形ACDE是直角梯形,又容易求得,AC=,所以四邊形ACDE的面積為,所以四棱錐P—ACDE的體積為=.

考點(diǎn):平面與平面垂直的判定;體積;空間中直線與平面之間的位置關(guān)系;直線與平面所成的角.

點(diǎn)評(píng):本題主要考查空間中的基本關(guān)系,考查線面垂直、面面垂直的判定以及線面角和幾何體體積的計(jì)算,考查識(shí)圖能力、空間想象能力和邏輯推理能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在五棱錐P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°精英家教網(wǎng)
(1)求二面角P-DE-A的大小
(2)求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在五棱錐P-ABCDE中,PA=AB=AE=2a,PB=PE=2
2
 a
,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.
(1)求證:PA⊥平面ABCDE;
(2)求異面直線CD與PB所成角的大。
(3)求二面角A-PD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在五棱錐P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°
(1)求二面角P-DE-A的大小
(2)求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市西南師大附中高三(下)第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,在五棱錐P-ABCDE中,PA=AB=AE=2a,PB=PE=,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.
(1)求證:PA⊥平面ABCDE;
(2)求異面直線CD與PB所成角的大;
(3)求二面角A-PD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省長(zhǎng)沙市高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

如圖,在五棱錐P-ABCD中PA 丄平面ABCDE,PA=AB=AE=2BC=2DE=2,∠DEA=∠EAB=∠ABC=90°
(1)求二面角P-DE-A的大小
(2)求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案