已知橢圓上的點(diǎn)到左右兩焦點(diǎn)的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線交橢圓于兩點(diǎn),若軸上一點(diǎn)滿足,求直線的斜率的值.
(1);(2).
解析試題分析:(1)根據(jù)與離心率可求得a,b,c的值,從而就得到橢圓的方程;(2)設(shè)出直線的方程,并與橢圓方程聯(lián)立消去y可得到關(guān)于x的一元二次方程,然后利用中點(diǎn)坐標(biāo)公式與分類討論的思想進(jìn)行解決.
試題解析:(1),∴,
,∴,∴,
橢圓的標(biāo)準(zhǔn)方程為.
(2)已知,設(shè)直線的方程為,-,
聯(lián)立直線與橢圓的方程,化簡(jiǎn)得:,
∴,,
∴的中點(diǎn)坐標(biāo)為.
①當(dāng)時(shí),的中垂線方程為,
∵,∴點(diǎn)在的中垂線上,將點(diǎn)的坐標(biāo)代入直線方程得:
,即,
解得或 .
②當(dāng)時(shí),的中垂線方程為,滿足題意,
∴斜率的取值為.
考點(diǎn):1、橢圓的方程及幾何性質(zhì);2、直線與橢圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的左焦點(diǎn)為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)P(-2,0)的直線與橢圓E交于A、B兩點(diǎn),且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點(diǎn),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線與能否垂直?若能,之間滿足什么關(guān)系;若不能,說(shuō)明理由;
(2)已知為的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知點(diǎn)和,過(guò)點(diǎn)的直線與過(guò)點(diǎn)的直線相交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,如果,求點(diǎn)的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長(zhǎng)線相交于點(diǎn),則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)到、的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線于、兩點(diǎn),若成等比數(shù)列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)的橢圓:的右焦點(diǎn)為,過(guò)焦點(diǎn)且與軸不重合的直線與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,直線,分別交橢圓的右準(zhǔn)線于,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為,試求直線的方程;
(3)記,兩點(diǎn)的縱坐標(biāo)分別為,,試問(wèn)是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓C經(jīng)過(guò)點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過(guò)點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com