定義數(shù)列如下:
證明:(1)當
時,恒有
成立;
(2)當
且
時,有
成立;
(3)
.
(1)用數(shù)學歸納法進行證明.(略)
(2)由
得:
………
累加得:
又
則
(3)
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)數(shù)列
的各項都是正數(shù),
,
,
.
⑴求數(shù)列
的通項公式;⑵求數(shù)列
的通項公式;
⑶求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
,且
),
,
且
,
(1)證明:
為等比數(shù)列
(2)求
和
的通項公式。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知在數(shù)列
中,
(
).
(I)若
q =2,
d = -1,,求
a3,
a4,并猜測
a2006;
(II)若
是等比數(shù)列,且
是等差數(shù)列,求
q,
d滿足的條件.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(Ⅰ)求
的值;
(Ⅱ)記
,是否存在一個實數(shù)
,使數(shù)列
為等差數(shù)列?若存在,求出實數(shù)
;若不存在,請說明理由;
(Ⅲ)求數(shù)列{
}的前n項和
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列
的前
項和為
,
(
).
(Ⅰ)證明數(shù)列
是等比數(shù)列,求出數(shù)列
的通項公式;
(Ⅱ)設(shè)
,求數(shù)列
的前
項和
;
(Ⅲ)數(shù)列
中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知,等差數(shù)列
的首項
,公差
,且第二項、第五項、第十四項分別是等比數(shù)列
的第二項、第三項、第四項。(1)求數(shù)列
的通項公式;(2)設(shè)數(shù)列
對任意正整數(shù)
均有
成立,求數(shù)列
的前
項的和
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列{a
n}的前n項和為S
n,a
1=1,a
n+1-a
n-1=0,數(shù)列{b
n}滿足b
1=2,a
nb
n+1=2a
n+1b
n.
(1)求S
;
(2)求b
n.
查看答案和解析>>