命題P:“對(duì)于任意的實(shí)數(shù)x都有x2+x+1>0”的否定是   
【答案】分析:命題“對(duì)于任意的實(shí)數(shù)x都有x2+x+1>0”是全稱命題,其否定應(yīng)為特稱命題,注意量詞和不等號(hào)的變化.
解答:解:命題“對(duì)于任意的實(shí)數(shù)x都有x2+x+1>0”是全稱命題,
否定時(shí)將量詞對(duì)任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號(hào)>變?yōu)椤芗纯桑?br />故答案為:存在實(shí)數(shù)x,有x2+x+1≤0.
點(diǎn)評(píng):本題考查命題的否定,全稱命題和特稱命題,屬基本知識(shí)的考查.注意在寫命題的否定時(shí)量詞的變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、命題P:“對(duì)于任意的實(shí)數(shù)x都有x2+x+1>0”的否定是
存在實(shí)數(shù)x,有x2+x+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有兩個(gè)命題p、q,其中命題p:對(duì)于任意的x∈R,不等式ax2+2x+1>0恒成立;命題q:f(x)=(4a-3)x在R上為減函數(shù).如果兩個(gè)命題中有且只有一個(gè)是真命題,那么實(shí)數(shù)a的取值范圍是
3
4
,1)∪(1,+∞)
3
4
,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)下列三個(gè)結(jié)論中
①命題p:“對(duì)于任意的x∈R,都有x2≥0”,則?p為“存在x∈R,使得x2<0”;②某人5 次上班途中所花的時(shí)間(單位:分鐘)分別為8、10、11、9、x.已知這組數(shù)據(jù)的平均數(shù)為10,則其方差為2;③若函數(shù)f(x)=x2+2ax+2在區(qū)間(-∞,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,-4).你認(rèn)為正確的結(jié)論序號(hào)為
①②
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:對(duì)于任意的x∈[2,4],不等式x2-a≥0恒成立;命題q:指數(shù)函數(shù)y=ax是R上的增函數(shù),若命題“p∧q”是假命題且“?q”是假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌外國(guó)語(yǔ)學(xué)校高三(上)8月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)有兩個(gè)命題p、q,其中命題p:對(duì)于任意的x∈R,不等式ax2+2x+1>0恒成立;命題q:f(x)=(4a-3)x在R上為減函數(shù).如果兩個(gè)命題中有且只有一個(gè)是真命題,那么實(shí)數(shù)a的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案