設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2) 若恒成立,求的范圍.
(3)求證:
(1) 0. (2)  .
(3) 結(jié)合(2)時(shí),成立.令
得到,

  
累加可得.

試題分析:(1)求導(dǎo)數(shù),并由得到的值; (2)恒成立問題,往往轉(zhuǎn)化成求函數(shù)的最值問題.本題中設(shè),即轉(zhuǎn)化成.利用導(dǎo)數(shù)研究函數(shù)的最值可得.
(3) 結(jié)合(2)時(shí),成立.令得到,

  
累加可得.
試題解析:(1)            2分
由題設(shè)
,.                    4分
(2) ,,,即
設(shè),即.
                   6分
①若,,這與題設(shè)矛盾.         8分
②若方程的判別式
當(dāng),即時(shí),.上單調(diào)遞減,
,即不等式成立.                                            9分
當(dāng)時(shí),方程,其根,,
當(dāng),單調(diào)遞增,,與題設(shè)矛盾.
綜上所述, .                              10分
(3) 由(2)知,當(dāng)時(shí), 時(shí),成立.
不妨令
所以,
           11分
             12分
累加可得

            14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,,點(diǎn)A、B為函數(shù)的相鄰兩個(gè)零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)令,是否存在實(shí)數(shù),當(dāng) (是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)的最小值是.若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇,要求的延長(zhǎng)線上,的延長(zhǎng)線上,且對(duì)角線點(diǎn).已知米,米。

(1)設(shè)(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當(dāng)的長(zhǎng)度分別是多少時(shí),花壇的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),則函數(shù)在區(qū)間上的圖像可能是下列中的       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,若函數(shù)的“新駐點(diǎn)”分別為,則的大小關(guān)系為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過坐標(biāo)原點(diǎn)與曲線相切的直線方程為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若過點(diǎn)的直線與曲線都相切,則的值為       (    )
A.2B.C.2或D.3或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(diǎn)的切線方程是       .

查看答案和解析>>

同步練習(xí)冊(cè)答案