設函數(shù)f(x)=2
3
sinxcosx
,求f(x)的最大值、最小正周期和單調區(qū)間.
分析:利用二倍角的正弦函數(shù)化簡函數(shù)的表達式即可求解函數(shù)的周期,最值以及函數(shù)的單調區(qū)間.
解答:(本題8分
解:f(x)=2
3
sinxcosx=
3
sin2x
,
所以f(x)的最大值是
3
,最小正周期是π,
單調遞增區(qū)間是[-
π
4
+kπ, 
π
4
+kπ]
(k∈Z),
單調遞減區(qū)間是[
π
4
+kπ, 
4
+kπ]
(k∈Z);
點評:本題考查三角函數(shù)的化簡周期的求法、最值的求法、單調區(qū)間的求解,基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•廣東模擬)設函數(shù)f(x)=3sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
的圖象關于直線x=
2
3
π
對稱,它的周期是π,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2
3
+
1
x
(x>0)
,數(shù)列{an}滿足a1=1,an=f(
1
an-1
),n∈N*且n≥2

(1)求數(shù)列{an}的通項公式;
(2)對n∈N*,設Sn=
1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
anan+1
,求證:Sn
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2
3
+
1
x
(x>0)
,數(shù)列{an}滿足a1=1,an=f(
1
an-1
),n∈N*且n≥2

(1)求數(shù)列{an}的通項公式;
(2)對n∈N*,設Sn=
1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
anan+1
,若Sn
3t
4n
恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•太原模擬)設函數(shù)f(x)=a(x+
1
x
)+2lnx,g(x)=x2

(1)若a=
1
2
時,直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點,求切線l的方程;
(2)若f(x)在[2,4]內為單調函數(shù),求實數(shù)a的取值范圍.
說明:請考生在第22、23、24三題中任選一題作答,如果多做,則按所做第一題記分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•順義區(qū)一模)已知向量
m
=(2cos
x
2
,1)
,
n
=(cos
x
2
,-1)
,(x∈R),設函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的值域;
(Ⅱ)已知△ABC的三個內角分別為A、B、C,若f(A)=
1
3
,BC=2
3
,AC=3
,求邊長AB的值.

查看答案和解析>>

同步練習冊答案