16.寫出橢圓4x2+y2=16的長軸長、短軸長、離心率、焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo).

分析 利用橢圓方程化為標(biāo)準(zhǔn)方程,然后求解即可.

解答 解:橢圓4x2+y2=16的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$,可得a=4,b=2,c=2$\sqrt{3}$.
橢圓4x2+y2=16的長軸長:8;短軸長為:4;離心率:e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;焦點(diǎn)坐標(biāo):(0,±2$\sqrt{3}$,);頂點(diǎn)坐標(biāo)(±2,0);(0,±4).

點(diǎn)評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-alnx(a∈R).
(I)若f(x)在[1,3]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)記g(x)=f(x)+(2+a)lnx-2(b-1)x,并設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥1+$\frac{3}{2}\sqrt{2}$,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}滿足a3•a7=-12,a4+a6=-4,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-lnx,x>0\\{x^2}+1,x<0\end{array}$,則f[f(e)]的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,asinA+csinC=$\sqrt{2}$asinC+bsinB.
(1)求B;
(2)若A=$\frac{5π}{12}$,b=2,求a和c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值為( 。
A.3B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若方程x2-mx+m-1=0有兩根,其中一根大于2一根小于2的充要條件是m>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,且滿足2bcosC=2a-c.
(Ⅰ)求B;            
(Ⅱ)若△ABC的面積為$\sqrt{3}$,b=2求a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列結(jié)論正確的是①②④
①在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.35,則ξ在(0,2)內(nèi)取值的概率為0.7;
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=e4;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”是真命題;
④設(shè)常數(shù)a,b∈R,則不等式ax2-(a+b-1)x+b>0對?x>1恒成立的充要條件是a≥b-1.

查看答案和解析>>

同步練習(xí)冊答案