【題目】已知函數(shù)f(x)=x2+ .
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0, )和( ,+∞)上的單調(diào)性并用定義法證明.
【答案】
(1)證明:f(x)=x2+ ,則其定義域為{x|x≠0},關于原點對稱,
f(﹣x)=(﹣x)2+ =x2+ =f(x),
故函數(shù)f(x)為偶函數(shù)
(2)解:根據(jù)題意,函數(shù)f(x)在(0, )為減函數(shù),在( ,+∞)上為增函數(shù);
證明如下:
設0<x1<x2< ,
則f(x1)﹣f(x2)=(x1)2+( )﹣(x2)2+( )
=[(x1)2﹣(x2)2][ ]=[(x1﹣x2)(x1+x2)][ ],
又由0<x1<x2< ,
則f(x1)﹣f(x2)>0,
則f(x)在(0, )為減函數(shù),
同理設 <x1<x2,
則f(x1)﹣f(x2)=(x1)2+( )﹣(x2)2+( )
=[(x1)2﹣(x2)2][ ]=[(x1﹣x2)(x1+x2)][ ],
又由 <x1<x2,
分析可得f(x1)﹣f(x2)<0,
則f(x)在(0, )為增函數(shù)
【解析】(1)、根據(jù)題意,先分析函數(shù)的定義域,進而求出f(﹣x),分析與f(x)的關系,即可得證明;(2)、根據(jù)題意,分析可得函數(shù)f(x)在(0, )為減函數(shù),在( ,+∞)上為增函數(shù);進而利用作差法證明即可.
【考點精析】通過靈活運用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點, 的四個頂點構成的四邊形面積為.
(1)求橢圓的方程;
(2)在橢圓上是否存在相異兩點,使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求函數(shù)f(x)的定義域和值域;
(2)設F(x)= [f2(x)﹣2]+f(x)(a為實數(shù)),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(a),若﹣m2+2tm+ ≤g(a)對a<0所有的實數(shù)a及t∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在對人們休閑方式的一次調(diào)查中,共調(diào)查120人,其中女性70人、男性50人,女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)在犯錯誤的概率不超過0.10的前提下,認為休閑方式與性別是否有關?
參考數(shù)據(jù):獨立性檢驗臨界值表
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= ,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的有( )
①用反證法證明命題“a,b∈R,方程x3+ax+b=0至少有一個實根”時,要作的假設是“方程至多有兩個實根”;
②用數(shù)學歸納法證明“1+2+22+…+2n+2=2n+3﹣1,在驗證n=1時,左邊的式子是1+2+22;
③用數(shù)學歸納法證明 + +…+ > (n∈N*)的過程中,由n=k推導到n=k+1時,左邊增加的項為 + ,沒有減少的項;
④演繹推理的結論一定正確;
⑤要證明“ ﹣ > ﹣ ”的最合理的方法是分析法.
A.①④
B.④
C.②③⑤
D.⑤
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,若對任意的恒成立,求實數(shù)的值;
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距12km.A車、B車先后從甲地出發(fā)勻速駛向乙地.A車從甲地到乙地需行駛15min;B車從甲地到乙地需行駛10min.若B車比A車晚出發(fā)2min:
(1)分別寫出A,B兩車所行路程關于A車行駛時間的函數(shù)關系式;
(2)A,B兩車何時在途中相遇?相遇時距甲地多遠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在[﹣2,2]上的偶函數(shù)g(x),當x≥0時,g(x)單調(diào)遞減,若g(1﹣m)﹣g(m)<0,則實數(shù)m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com