如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,在x軸負(fù)半軸上有一點B,滿足AB⊥AF2.且F1為BF2的中點.
(1)求橢圓C的離心率;
(2)D是過A,B,F(xiàn)2三點的圓上的點,D到直線l:x-
3
y-3=0的最大距離等于橢圓長軸的長,求橢圓C的方程.
分析:(1)由題意求出F2(c,0),A(0,b),設(shè)B(x0,0),根據(jù)向量
AF2
AB
利用數(shù)量積建立關(guān)系式,算出x0=-
b 2
c
,再由F1為BF2中點化簡得a2=4c2,從而求出橢圓C的離心率;
(2)由(1)的結(jié)論得到F2、B的坐標(biāo),從而得到△ABF2的外接圓圓心為F1(-
1
2
a,0),半徑r=a.利用點到直線的距離公式,結(jié)合題意建立關(guān)于a的方程,解之得a=2,進(jìn)而得到c=1且b=
3
,可得橢圓C的方程.
解答:解:(1)設(shè)B(x0,0),由F2(c,0),A(0,b),
AF2
=(c,-b),
AB
=(x0,-b)
AF2
AB
,∴cx0+b2=0,解之得x0=-
b 2
c

∵F1為BF2中點,∴-
b 2
c
+c=-2c,化簡得b2=3c2=a2-c2,即a2=4c2,
故a=2c,可得橢圓C的離心率e=
c
a
=
1
2
;
(2)由(1)知c=
1
2
a,于是F2
1
2
a,0),B(-
3
2
a,0),
△ABF2的外接圓圓心為F1(-
1
2
a,0),半徑r=a,
∵D到直線l:x-
3
y-3=0的最大距離等于2a,∴圓心到直線的距離為a,
可得
|-
1
2
a-3|
2
=a
,解之得a=2,得到c=1且b=
3
,
∴橢圓C的方程為
x2
4
+
y2
3
=1.
點評:本題給出橢圓滿足的條件,求橢圓的離心率和方程.著重考查了橢圓的標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)和直線與圓的位置關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓C:
x2
a2
+
y2
2
=1
焦點在x軸上,左、右頂點分別為A1、A,上頂點為B,拋物線C1、C2分別以A、B為焦點,其頂點均為坐標(biāo)原點O.C1與C2相交于直線y=
2
x
上一點P.
(Ⅰ)求橢圓C及拋物線C1、C2的方程;
(Ⅱ)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M、N,已知點Q(-
2
,0),求
QM
.
QN
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)二模)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1、A2為橢圓C的左、右頂點.
(Ⅰ)設(shè)F1為橢圓C的左焦點,證明:當(dāng)且僅當(dāng)橢圓C上的點P在橢圓的左、右頂點時|PF1|取得最小值與最大值;
(Ⅱ)若橢圓C上的點到焦點距離的最大值為3,最小值為1.求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅲ)若直線l:y=kx+m與(Ⅱ)中所述橢圓C相交于A,B兩點(A,B不是左右頂點),且滿足AA2⊥BA2,求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
a2-1
=1
的左右頂點分別為A、B,左右焦點分別為F1、F2,P為以F1、F2為直徑的圓上異于F1、F2的動點,直線PF1、PF2分別交橢圓C于M、N和D、E.
(1)證明:
AP
BP
為定值K;
(2)當(dāng)K=-2時,問是否存在點P,使得四邊形DMEN的面積最小,若存在,求出最小值和P坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的頂點為A1、A2、B1、B2,焦點為F1
F2,|A1B1|=
7

S?A1B1A2B 2=2S?B1F1B2F 2
(1)求橢圓C的方程;
(2)設(shè)l是過原點的直線,直線n與l垂直相交于P點,且n與橢圓相交于A,B兩點,|OP|=1,求
AP
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發(fā),被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發(fā)被雙曲線反射后的反射光線等效于從另一個焦點發(fā)出;如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
與雙曲線C′:
x2
m2
-
y2
n2
=1(m>0,n>0)
有公共焦點,現(xiàn)一光線從它們的左焦點出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過2k(k∈N*)次反射后回到左焦點所經(jīng)過的路徑長為( 。

查看答案和解析>>

同步練習(xí)冊答案