數(shù)列{an}滿足an=2an-1+2n-1(n≥2),其中a3=25.若存在一個實數(shù)λ,使得數(shù)學公式為等差數(shù)列,則λ=________.

-1
分析:由題意求出a3.a(chǎn)2.a(chǎn)1.把表達式兩邊減去1,然后同除2n,計算的值,說明數(shù)列為等差數(shù)列,求出λ的值.
解答:因為數(shù)列{an}滿足an=2an-1+2n-1(n≥2),a3=25.a(chǎn)2=9.a(chǎn)1=3.
所以an-1=2an-1-2+2n(n≥2),
所以,=3,=2,=1,
所以為等差數(shù)列,首項為1,公差為1的等差數(shù)列.
所以λ=-1.
故答案為:-1.
點評:本題是中檔題,考查數(shù)列的遞推關系式的應用,注意正確求出數(shù)列的通項公式,驗證數(shù)列是等差數(shù)列是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•浙江模擬)數(shù)列{an}滿足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為R,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項和為Sn,對于給定的正整數(shù)m,如果
S(m+1)nSmn
的值與n無關,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an} 滿足
an+12an2
=p
(p為正常數(shù),n∈N*),則稱{an} 為“等方比數(shù)列”.則“數(shù)列{an} 是等方比數(shù)列”是“數(shù)列{an} 是等比數(shù)列”的
必要非充分
必要非充分
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浦東新區(qū)二模)數(shù)列{an}滿足an+1=
4an-2
an+1
(n∈N*).
①存在a1可以生成的數(shù)列{an}是常數(shù)數(shù)列;
②“數(shù)列{an}中存在某一項ak=
49
65
”是“數(shù)列{an}為有窮數(shù)列”的充要條件;
③若{an}為單調(diào)遞增數(shù)列,則a1的取值范圍是(-∞,-1)∪(1,2);
④只要a1
3k-2k+1
3k-2k
,其中k∈N*,則
lim
n→∞
an
一定存在;
其中正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇二模)已知各項均為正整數(shù)的數(shù)列{an}滿足an<an+1,且存在正整數(shù)k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當k=3,a1a2a3=6時,求數(shù)列{an}的前36項的和S36;
(2)求數(shù)列{an}的通項an;
(3)若數(shù)列{bn}滿足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項積為Tn,試問n為何值時,Tn取得最大值?

查看答案和解析>>

同步練習冊答案