【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長(zhǎng)為1的正方形,側(cè)棱PD=1,PA=PC=.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)由題意及圖形利用線面垂直的判定定理即可得證;(2)由(1)可得PD⊥AC,又四邊形ABCD為正方形,所以AC⊥BD,由線面垂直的判定定理得到AC⊥平面PBD,進(jìn)一步利用面面垂直的判斷證明;
試題解析:(1)∵PD=1,DC=1,PC=,
∴PC2=PD2+DC2,
∴PD⊥DC.
同理可證PD⊥AD,又AD∩DC=D,
∴PD⊥平面ABCD.
(2)由(1)知PD⊥平面ABCD,
∴PD⊥AC,而四邊形ABCD是正方形,
∴AC⊥BD,又BD∩PD=D,
∴AC⊥平面PDB.
同時(shí),AC平面PAC,
∴平面PAC⊥平面PBD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的不等式的解集為.
(1)若是從四個(gè)數(shù)中任取的一個(gè)數(shù), 是從三個(gè)數(shù)中任取的一個(gè)數(shù),求不為空集的概率;
(2)若是從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求不為空集的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,.
(1)在上確定一點(diǎn),使得平面,并求的值;
(2)在(1)條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解今年某校高三畢業(yè)班想?yún)④姷膶W(xué)生體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖).已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24.
(Ⅰ)求該校高三畢業(yè)班想?yún)④姷膶W(xué)生人數(shù);
(Ⅱ)以這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)全省的總體數(shù)據(jù),若從全省高三畢業(yè)班想?yún)④姷耐瑢W(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過60公斤的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:()與橢圓:相交所得的弦長(zhǎng)為.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且為定值()時(shí),證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連江一中第49屆田徑運(yùn)動(dòng)會(huì)提出了“我運(yùn)動(dòng)、我陽(yáng)光、我健康、我快樂”的口號(hào),某同學(xué)要設(shè)計(jì)一張如圖所示的豎向張貼的長(zhǎng)方形海報(bào)進(jìn)行宣傳,要求版心面積為162 (版心是指圖中的長(zhǎng)方形陰影部分,為長(zhǎng)度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .
(Ⅰ)若設(shè)版心的高為 ,求海報(bào)四周空白面積關(guān)于的函數(shù)的解析式;
(Ⅱ)要使海報(bào)四周空白面積最小,版心的高和寬該如何設(shè)計(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=lg(ax2+2x+1) .
(1)若函數(shù)f (x)的定義域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f (x)的值域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,為等邊三角形,,,為的中點(diǎn).
(1)求;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù), 且當(dāng)時(shí),, 求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com