精英家教網 > 高中數學 > 題目詳情
設i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且
OA
=-2i+mj,
OB
=ni+j,
OC
=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數m、n的值.
AB
=
OB
-
OA
=(n+2)i+(1-m)j,
BC
=
OC
-
OB
=(5-n)i+(-2)j.
∵點A、B、C在同一條直線上,∴
AB
BC
,
AB
BC
,
∴(n+2)i+(1-m)j=λ[(5-n)i+(-2)j],
n+2=λ(5-n)
1-m=-2λ       
m=2n
解得
m=6
n=3
m=3
n=
3
2
.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且
OA
=-2i+mj,
OB
=ni+j,
OC
=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數m、n的值.

查看答案和解析>>

科目:高中數學 來源:《8.1 平面向量》2013年高考數學優(yōu)化訓練(文科)(解析版) 題型:解答題

設i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數m、n的值.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪復習鞏固與練習:平面向量(解析版) 題型:解答題

設i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數m、n的值.

查看答案和解析>>

科目:高中數學 來源:2011年高考數學復習:4.1 平面向量的概念及其線性運算(解析版) 題型:解答題

設i、j分別是平面直角坐示系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點A、B、C在同一條直線上,且m=2n,求實數m、n的值.

查看答案和解析>>

同步練習冊答案