已知橢圓=1(a>b>0),點P在橢圓上.
(1)求橢圓的離心率;
(2)設A為橢圓的左頂點,O為坐標原點.若點Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.
(1)(2)k=±.
(1)因為點P在橢圓上,故=1,可得.
于是e2=1-,所以橢圓的離心率e=.
(2)設直線OQ的斜率為k,則其方程為y=kx,設點Q的坐標為(x0,y0).
由條件得消去y0并整理得.①
由AQ=AO,A(-a,0)及y0=kx0,得(x0+a)2+k2=a2.
整理得(1+k2)+2ax0=0,而x0≠0,故x0,代入①,整理得(1+k2)2=4k2·+4.由(1)知,故(1+k2)2k2+4,
即5k4-22k2-15=0,可得k2=5.所以直線OQ的斜率k=±.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
(1)求橢圓C的標準方程。
(2)過點Q(0,)的直線與橢圓交于A、B兩點,與直線y=2交于點M(直線AB不經(jīng)過P點),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù),使得若存在,求出名的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(2)設m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,

過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的中心在原點,焦點在y軸上,若其離心率為,焦距為8,則該橢圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,=4.

(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應的圓Q的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是橢圓上的點,、是橢圓的兩個焦點,,則 的面積等于______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓G的中心在坐標原點,長軸在x軸上,離心率為,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______________.

查看答案和解析>>

同步練習冊答案