已知數(shù)列{an}的前n項(xiàng)和為Sn,設(shè)an是Sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,bn+1=bn+2.

(1)求an,bn;

(2)若數(shù)列{bn}的前n項(xiàng)和為Bn,比較+…+與2的大;

(3)令Tn=+…+,是否存在正整數(shù)M,使得Tn<M對(duì)一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請(qǐng)說明理由.

(1)由題意2an=Sn+2,∴Sn=2an-2,Sn+1=2an+1-2,∴an+1=Sn+1-Sn=2an+1-2an,

即an+1=2an,又2a1=S1+2=a1+2,∴a1=2,∴an=2n.∵b1=1,bn+1=bn+2,∴bn=2n-1.

(2)Bn=1+3+5+…+(2n-1)=n2.+…++…+<1++…+=1++…+=2-<2.

(3)Tn=+…+,∴Tn=+…+,兩式相減,得Tn=+2+2×,∴Tn=3-<3.又T1=,Tn單調(diào)遞增,∴Tn∈.∴M的最小值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案