3.如圖,四棱柱ABCD-A1B1C1D1中,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1,C,D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為E,F(xiàn)為BC的中點(diǎn),G在側(cè)棱AA1上,
(1)證明:E為BB1的中點(diǎn),
(2)若AG:A1G=3:1,求證:FG∥平面CDE.

分析 (1)延長(zhǎng)DC與AB相交于P,則P?DC,連結(jié)A1P交BB1于E,由已知推導(dǎo)出△A1AP∽△BQP,由此能證明E為BB1的中點(diǎn).
(2)取BE中點(diǎn)M,連結(jié)FM、GM,由已知推導(dǎo)出面GFM∥面A1ECD,由此能證明GF∥面CDE.

解答 證明:(1)在底面ABCD中,∵四邊形ABCD為梯形,AD∥BC,且AD=2BC,
延長(zhǎng)DC與AB相交于P,則P?DC,連結(jié)A1P交BB1于E,
∵DC?平面α,∴P?α,
∵AD∥BC,且AD=2BC,∴BC:AD=PB:AP=1:2,
∵A1A∥BQ
∴△A1AP∽△BQP,
∴$\frac{BE}{A{A}_{1}}$=$\frac{BP}{AP}$=2,
∴E為BB1的中點(diǎn).
(2)取BE中點(diǎn)M,連結(jié)FM、GM,
∵F、M為BC、BE中點(diǎn),∴MF∥EC,
∵${A}_{1}G=\frac{1}{4}{A}_{1}A,EM=\frac{1}{4}{B}_{1}B$,∴A1G$\underset{∥}{=}$EM,∴A1E∥GM,
∴面GFM∥面A1ECD,
∴GF∥面CDE.

點(diǎn)評(píng) 本題考查線段中點(diǎn)的證明,考查線面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函數(shù).
(Ⅰ)確定y=g(x),y=f(x)的解析式;
(Ⅱ)若h(x)=f(x)+a在(-1,1)上有零點(diǎn),求a的取值范圍;
(Ⅲ)若對(duì)任意的t∈(1,4),不等式f(2t-3)+f(t-k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個(gè)圓錐過軸的截面為等邊三角形,它的頂點(diǎn)和底面圓周在球O的球面上,則該圓錐的體積與球O的體積的比值為$\frac{9}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD中,四邊形ABCD為平行四邊形,E,F(xiàn)分別為所在邊中點(diǎn),證明:EF∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在(-∞,+∞)上的函數(shù)f(x)是偶函數(shù),并且f(x)在[0,+∞)上是增函數(shù).若f(1)<f(lgx),那么x的取值范圍是(0,$\frac{1}{10}$)∪(10,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,已知a1=2,a8=9,則S14=119.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的首項(xiàng)a1=5,前n項(xiàng)和為Sn,且Sn+1=2Sn+n+5(n∈N*),
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=mx2+2(m+1)x+m+3負(fù)零點(diǎn)的個(gè)數(shù)為1,則m的取值范圍是m=1或-3≤m≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)y=ax是(-∞,+∞)上的減函數(shù),則a的取值范圍是(0,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案