【題目】如圖,橢圓經過點,且點到橢圓的兩焦點的距離之和為.
(l)求橢圓的標準方程;
(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線與交于點,為坐標原點,求證:三點共線.
【答案】(1) (2)見解析
【解析】分析:
(1)根據(jù)橢經過點,且點到橢圓的兩焦點的距離之和為,結合性質 ,,列出關于 、 的方程組,求出 、 ,即可得橢圓的標準方程;
(2)可設直線的方程為,聯(lián)立得,設點,根據(jù)韋達定理可得,所以點在直線上,又點也在直線上,進而得結果.
詳解:
(1)因為點到橢圓的兩焦點的距離之和為,
所以,解得.
又橢圓經過點,所以.
所以.
所以橢圓的標準方程為.
證明:(2)因為線段的中垂線的斜率為,
所以直線的斜率為-2.
所以可設直線的方程為.
據(jù)得.
設點,,.
所以, .
所以,.
因為,所以.
所以點在直線上.
又點,也在直線上,
所以三點共線.
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象( )
A. 所有點的橫坐標伸長到原來的2倍(縱坐標不變), 再將所得的圖像向左平移個單位.
B. 所有點的橫坐標伸長到原來的2倍(縱坐標不變), 再將所得的圖像向左平移個單位.
C. 所有點的橫坐標縮短到原來的倍(縱坐標不變), 再將所得的圖像向左平移個單位.
D. 所有點的橫坐標縮短到原來的倍(縱坐標不變), 再將所得的圖像向左平移個單位.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)的一條對稱軸是;
②函數(shù)的圖象關于點(,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個命題中正確的有 (填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+x﹣ln(x+a)+3b在x=0處取得極值0. (Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若關于x的方程f(x)= x+m在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三棱錐的體積為,每個頂點都在半徑為的球面上,球心在此三棱錐內部,且,點為線段的中點,過點作球的截面,則所得截面圓面積的最小值是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2011年至2017年農村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求樣本中心點坐標;
(2)已知兩變量線性相關,求y關于t的線性回歸方程;
(3)利用(2)中的線性回歸方程,分析2011年至2017年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2019年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在多面體中, 平面,,四邊形是邊長為的菱形.
(1)證明: ;
(2)線段上是否存在點,使平面,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com