(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時,f(x)的最大值為4,求a的值,并說明此時f(x)的圖象可由函數(shù)y=2sin(x+)的圖象經(jīng)過怎樣的平移和伸縮變換而得到.
解:(1)y=·=1+cos2x+sin2x+a,
∴f(x)=1+cos2x+3sin2x+a=2sin(2x+)+a+1.
由2kπ-≤2x+≤2kπ+,得kπ≤x≤kπ+,k∈Z.
∴f(x)在[0,π]上的單調(diào)遞增區(qū)間為[0,]和[,π].
(2)f(x)=2sin(2x+)+a+1,x∈[0, ],2x+∈[,],2sin(2x+)∈[-1,2],
∴當(dāng)x=時,f(x)取最大值a+3=4.解得a=1,f(x)=2sin(2x+)+2.
將y=2sin(x+)的圖象上的每一點的橫坐標(biāo)縮短到原來的一半,縱坐標(biāo)保持不變,再向上平移2個單位長度,得f(x)=2sin(2x+)+2的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年聊城市四模理) (12分) 已知M、N兩點的坐標(biāo)分別是M(1+cos2x,1),N(1,sin2x+a)(x,是常數(shù)),令是坐標(biāo)原點).
(1)求函數(shù)的解析式,并求函數(shù)在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng),求a的值,并說明此時的圖象可由函數(shù)
的圖象經(jīng)過怎樣的平移和伸縮變換而得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知M、N兩點的坐標(biāo)分別是是常數(shù),令是坐標(biāo)原點.
(Ⅰ)求函數(shù)的解析式,并求函數(shù)在上的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時,的最大值為,求a的值,并說明此時的圖象可由函數(shù)的圖象經(jīng)過怎樣的平移和伸縮變換而得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時,f(x)的最大值為4,求a的值,并說明此時f(x)的圖象可由函數(shù)y=2sin(x+)的圖象經(jīng)過怎樣的平移和伸縮變換而得到.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com