【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差/攝氏度

10

11

13

12

8

發(fā)芽數(shù)/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:參考公式:,.

【答案】(1);(2),是.

【解析】

1)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有6種.根據(jù)等可能事件的概率得出結(jié)果.

2)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)公式求出線性回歸方程的系數(shù),寫出線性回歸方程并進行預(yù)報.

(1)設(shè)抽到不相鄰兩組數(shù)據(jù)為事件,因為從5組數(shù)據(jù)中選取2組數(shù)據(jù),若把當兩組數(shù)據(jù)出自12月1日和12月2 日時記為(1,2),則共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共有10種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩組數(shù)據(jù)的情況有4種,

所以.

(2)由數(shù)據(jù),求得,,,,,

所以,.

所以關(guān)于的線性回歸方程是,

時,,

同樣,當時,,;

所以,該研究所得到的線性回歸方程是可靠的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人做試驗,從一個裝有標號為1,23,4的小球的盒子中,無放回地取兩個小球,每次取一個,先取的小球的標號為,后取的小球的標號為,這樣構(gòu)成有序?qū)崝?shù)對

1)寫出這個試驗的所有結(jié)果;

2)求“第一次取出的小球上的標號為”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購物已經(jīng)成為許多人消費的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購物情況,特委托一家網(wǎng)絡(luò)公示進行了網(wǎng)絡(luò)問卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機抽取了200人進行抽樣分析,得到了下表所示數(shù)據(jù):

經(jīng)常進行網(wǎng)絡(luò)購物

偶爾或從不進行網(wǎng)絡(luò)購物

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)依據(jù)上述數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為該市市民進行網(wǎng)絡(luò)購物的情況與性別有關(guān)?

(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機選出人贈送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進行網(wǎng)絡(luò)購物的概率;

(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機抽取人贈送禮物,記經(jīng)常進行網(wǎng)絡(luò)購物的人數(shù)為,求的期望和方差.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和分別為,對任意,

1)若,求;

2)若對任意,都有

①當時,求數(shù)列的前項和;

②是否存在兩個整數(shù),使成等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點和到直線的距離之比為,設(shè)動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).

(1)求曲線的方程;

(2)當直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線的方程;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),制表如下:

每名快遞員完成一件貨物投遞可獲得的勞務(wù)費情況如下:

甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.

(1)根據(jù)表中數(shù)據(jù)寫出甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

(2)為了解乙公司員工的每天所得勞務(wù)費的情況,從這10天中隨機抽取1天,他所得的勞務(wù)費記為(單位:元),求的概率;

(3)根據(jù)表中數(shù)據(jù)估算公司的每位員工在該月所得的勞務(wù)費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),

(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(2)已知,,若對任意都成立,求的最大值;

(3)設(shè),若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,點的中點.

(1)證明:;

(2)若點為線段的中點,平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)在R上存在導(dǎo)數(shù)fx),對任意的xR,有fx+f-x=x2,且x∈(0,+∞)時,fx)<x.若f1-a-fa-a,則實數(shù)a的取值范圍是______

查看答案和解析>>

同步練習(xí)冊答案