已知平面向量
a
,
b
滿足|
a
|=1,
b
=(1,1),且
a
b
,則向量
a
的坐標是
 
考點:平面向量共線(平行)的坐標表示
專題:平面向量及應用
分析:
a
=(x,y).由于平面向量
a
,
b
滿足|
a
|=1,
b
=(1,1),且
a
b
,可得
x2+y2
=1,x-y=0.解出即可.
解答: 解:設
a
=(x,y).
∵平面向量
a
,
b
滿足|
a
|=1,
b
=(1,1),且
a
b
,
x2+y2
=1,x-y=0.
解得x=y=±
2
2

a
=(
2
2
,
2
2
)
(-
2
2
,-
2
2
)

故答案為:(
2
2
,
2
2
)
(-
2
2
,-
2
2
)
點評:本題考查了向量模的計算公式、向量共線定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=lg(ax2-x+a)的定義域為R,命題q:x2-2x-a>0在x∈[3,4]上恒成立.如果p或q為真,p且q為假,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:-2≤x≤11,q:1-3m≤x≤3+m(m>0),若?p是?q的必要不充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:2x-y+1=0,直線l2過點(1,1)傾斜角為直線l1的傾斜角的兩倍,則直線l2的方程為(  )
A、4x+3y-7=0
B、4x+3y+1=0
C、4x-y-3=0
D、4x-y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z滿足(2+i)z=-3+i,則z=( 。
A、2+iB、2-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(x-1)•|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)在[2,3]上的最小值為6,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足an+12=4Sn+4n-3,且a2,a5,a14恰好是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,(Tn+
3
2
)k≥3n-6恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對某班級50名同學一年來參加社會實踐的次數(shù)進行的調(diào)查統(tǒng)計,得到如下頻率分布表:
參加次數(shù)0123
人數(shù)0.10.20.40.3
根據(jù)上表信息解答以下問題:
(Ⅰ)從該班級任選兩名同學,用η表示這兩人參加社會實踐次數(shù)之和,記“函數(shù)f(x)=x2-ηx-1在區(qū)間(4,6)內(nèi)有零點”的事件為A,求A發(fā)生的概率P;
(Ⅱ)從該班級任選兩名同學,用ξ表示這兩人參加社會實踐次數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-x+a有且只有一個零點,其中a>0.
(1)求a的值;
(2)若對任意的x∈(1,+∞),有(x+1)f(x)+x2-2x+k>0恒成立,求實數(shù)k的最小值;
(3)設h(x)=f(x)+x-1,對任意x1,x2∈(0,+∞)(x1≠x2),證明:不等式
x1+x2
2
x1-x2
h(x1)-h(x2)
恒成立.

查看答案和解析>>

同步練習冊答案