觀察(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1
   (2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論
若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1
若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1
分析:由題意得,式子中共有三個(gè)角都不是90°,且它們的和為90°,從而可得結(jié)論.
解答:解:由題意得,式子中共有三個(gè)角都不是90°,且它們的和為90°,故有若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1.
故答案為:若α,β,γ都不是90°,且α+β+γ=90°,tanαtanβ+tanβtanγ+tanαtanγ=1.
點(diǎn)評(píng):本題考查類(lèi)比推理,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、觀察:
(1)tan10°tan20°+tan20°tan60°+tan60°tan10°=1;
(2)tan5°tan10°+tan10°tan75°+tan75°tan5°=1.
由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
    ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.
(Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察
(1)tan5°tan15°+tan5°tan70°+tan15°tan70°=1
(2)tan10°tan25°+tan25°tan55°+tan10°tan55°=1
(3)tan20°tan30°+tan20°tan40°+tan30°tan40°=1
由以上三式成立,推廣到一般結(jié)論,寫(xiě)出一般結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
    ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結(jié)論,寫(xiě)出你的推論.
(Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案