精英家教網 > 高中數學 > 題目詳情

如圖,在棱長為4的正方體ABCD-A′B′C′D′中,E、F分別是AD、A′D′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A′B′C′D′上運動,則線段MN的中點P的軌跡(曲面)與二面角A-A′D′-B′所圍成的幾何體的體積為


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式
C
分析:直接根據條件得到點P的軌跡是以點F為球心、1為半徑的球面,進而求出結論.
解答:依題意可知|FP|=|MN|=1,
因此點P的軌跡是以點F為球心、1為半徑的球面的
于是所求的體積是×(π×13)=π.
故選:C.
點評:解決此類問題的關鍵是熟悉結合體的結構特征與球的定義以及其表面積的計算公式.考查空間想象能力,計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•溫州一模)如圖,直線l⊥平面α,垂足為O,正四面體ABCD的棱長為4,C在平面α內,B是直線l上的動點,則當O到AD的距離為最大時,正四面體在平面α上的射影面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為4,點P從B點出發(fā),在正方形BCC1B1的邊上按逆針方向按如下規(guī)律運動:設第n次運動的路程為an,且an=cos
2
+2
,第n次運動后P點所在位置為Pn,回到B點后不再運動.
(1)求二面角Pi-AC-B的余弦值;
(2)是否存在正整數i、j,使得直線PiPj與平面ACD1平行?若存在,找出所有符合條件的PiPj,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,點D,D1分別為棱BC,B1C1的中點.
(1)求證:直線A1D1∥平面ADC1
(2)求證:平面ADC1⊥平面BCC1B1;
(3)設底面邊長為2,側棱長為4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•安徽模擬)下面關于棱長為1的正方體ABCD-A1B1C1D1敘述正確的是
②④⑤
②④⑤

①任取四個頂點,共面的情況有8種;
②任取四個頂點順次連接總共可構成10個正三棱錐;
③任取六個表面中的兩個,兩面平行的情況有5種;
④如圖把正方體展開,正方體原下底面A1B1C1D1與標號4對應;
⑤在原正方體中任取兩個頂點,這兩點間的距離在區(qū)間(
10
2
3
)
內的情況有4種.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省溫州市高三第一次適應性測試理科數學 題型:選擇題

如圖,直線平面,垂足為,正四面體的棱長為4,在平面內,

是直線上的動點,則當的距離為最大時,正四面體在平面上的射影面

積為(    )

    A.          B.   C.      D.

 

 

 

查看答案和解析>>

同步練習冊答案