已知p:(x+2)(x-10)≤0;q:x2-2x+1-m2≤0(m>0),若p是q的必要不充分條件,則實(shí)數(shù)m的取值范圍是   
【答案】分析:將p,q化簡(jiǎn),由已知,使q成立的每一個(gè)x都使p成立,所以x2-2x+1-m2≤0解集是(x+2)(x-10)≤0解集的子集.列出方程組,根據(jù)集合的關(guān)系列方程組并求解.
解答:解:滿足條件p:(x+2)(x-10)≤0的x的集合是A={x|-2≤x≤10}
    滿足條件q:x2-2x+1-m2≤0的x的集合是B={x|1-m≤x≤1+m}
   若p是q的必要不充分條件,則A?B,∴1-m≥-2,且1+m≤10,即0<m≤3
故答案為:0<m≤3.
點(diǎn)評(píng):本題是根據(jù)條件類型求參數(shù)取值范圍問題,可轉(zhuǎn)化為集合間的關(guān)系解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:(x+2)(x-10)≤0,q:[x-(1-m)][x-(1+m)]≤0(m>0),若-p是-q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、已知p:(x+2)(x-10)≤0;q:x2-2x+1-m2≤0(m>0),若p是q的必要不充分條件,則實(shí)數(shù)m的取值范圍是
0<m≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:對(duì)?x∈[-2,2],函數(shù)f(x)=lg(3a-ax-x2)總有意義;q:函數(shù)f(x)=
13
x3-ax2+4x+3
在[1,+∞)上是增函數(shù);若命題“p或q”為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知p:(x+2)(x-10)≤0,q:[x-(1-m)][x-(1+m)]≤0(m>0),若-p是-q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省阜陽一中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知p:對(duì)?x∈[-2,2],函數(shù)f(x)=lg(3a-ax-x2)總有意義;q:函數(shù)在[1,+∞)上是增函數(shù);若命題“p或q”為真,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案